

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.1]

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.1]

All shock solution to the nonlinear Riemann problem	Notes:
For the wave-propagation algorithm we need jump discontinuities $\mathcal{W}_{i-1/2}^p$.	
All-shock Riemann solution: Ignore rarefaction waves and use intersections of Hugoniot loci to define Riemann solution.	
Correct solution in some cases.	
Will replace rarefaction waves by entropy-violating shocks.	
If rarefaction is not transonic this is generally not a bad approximation: cell averages are very similar.	
Transonic rarefactions can be handled by modifying $\mathcal{A}^{\pm}\Delta Q_{i-1/2}$, the flux-difference splitting used in 1st order terms.	
Still use shock waves for high-resolution corrections.	
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Chap. 15]	R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Chap. 15
Upwind wave-propagation algorithm	Notes:
First order Godunov method:	
$Q_i^{n+1} = Q_i^n - \frac{\Delta \iota}{\Delta x} \left[\mathcal{A}^+ \Delta Q_{i-1/2} + \mathcal{A}^- \Delta Q_{i+1/2} \right]$	
where	
$\mathcal{A}^{-}\Delta Q_{i-1/2} = \sum_{p=1}^{m} (s_{i-1/2}^{p})^{-} \mathcal{W}_{i-1/2}^{p},$	
$\mathcal{A}^{+} \Delta Q_{i-1/2} = \sum_{m=1}^{m} (s_{i-1/2}^{p})^{+} \mathcal{W}_{i-1/2}^{p},$	
p=1	
May need to modify these by an entropy fix.	
R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3]	R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3
Entropy fix	Notes:
Various approaches possible.	
1. Compute "exact" value $q^{\psi}(Q_{i-1},Q_i)$ and set	
$\mathcal{A}^{-}\Delta Q_{i-1/2} = f(q^{\bigvee}) - f(Q_{i-1}),$	
$\mathcal{A}^+ \Delta Q_{i-1/2} = f(Q_i) - f(q^{\vee}).$	
2. Split transonic wave $W_{i-1/2}^p$ between $\mathcal{A}^- \Delta Q_{i-1/2}$ and $\mathcal{A}^+ \Delta Q_{i-1/2}$	
$\sim \sim \sim c_{i-1/2}$	

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.5]

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.5]

Approximate Riemann solvers

For nonlinear problems, computing the exact solution to each Riemann problem may not be possible, or too expensive.

Often the nonlinear problem $q_t + f(q)_x = 0$ is approximated by

 $q_t + A_{i-1/2}q_x = 0, \qquad q_\ell = Q_{i-1}, \quad q_r = Q_i$

for some choice of $A_{i-1/2} \approx f'(q)$ based on data Q_{i-1}, Q_i .

Solve linear system for $\alpha_{i-1/2}$: $Q_i - Q_{i-1} = \sum_p \alpha_{i-1/2}^p r_{i-1/2}^p$. Waves $W_{i-1/2}^p = \alpha_{i-1/2}^p r_{i-1/2}^p$ propagate with speeds $s_{i-1/2}^p$, $r^p_{i-1/2}$ are eigenvectors of $A_{i-1/2}$, $s_{i-1/2}^p$ are eigenvalues of $A_{i-1/2}$.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.2]

Approximate Riemann Solvers

Approximate true Riemann solution by set of waves consisting of finite jumps propagating at constant speeds.

Local linearization:

Replace $q_t + f(q)_x = 0$ by

$$q_t + \hat{A}q_x = 0,$$

where $\hat{A} = \hat{A}(q_l, q_r) \approx f'(q_{ave})$.

Then decompose

$$q_r - q_l = \alpha^1 \hat{r}^1 + \cdots \alpha^m \hat{r}^m$$

to obtain waves $\mathcal{W}^p = \alpha^p \hat{r}^p$ with speeds $s^p = \hat{\lambda}^p$.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Approximate Riemann solvers

 $q_t + \hat{A}_{i-1/2}q_x = 0, \qquad q_\ell = Q_{i-1}, \quad q_r = Q_i$ Often $\hat{A}_{i-1/2} = f'(Q_{i-1/2})$ for some choice of $Q_{i-1/2}$. In general $\hat{A}_{i-1/2} = \hat{A}(q_{\ell}, q_r)$.

Roe conditions for consistency and conservation:

- $\hat{A}(q_\ell,q_r)
 ightarrow f'(q^*)$ as $q_\ell,q_r
 ightarrow q^*$,
- \hat{A} diagonalizable with real eigenvalues,
- For conservation in wave-propagation form,

$$\hat{A}_{i-1/2}(Q_i - Q_{i-1}) = f(Q_i) - f(Q_{i-1}).$$

	R.J. LeVeque,	University of Washington	AMath 574, March 7, 2011	[Sec. 15.3]
Notes:				

Roe Solver

Solve $q_t + \hat{A}q_x = 0$ where \hat{A} satisfies

$$\hat{A}(q_r - q_l) = f(q_r) - f(q_l)$$

Then:

- · Good approximation for weak waves (smooth flow)
- Single shock captured exactly:

 $f(q_r) - f(q_l) = s(q_r - q_l) \implies q_r - q_l$ is an eigenvector of \hat{A}

• Wave-propagation algorithm is conservative since

$$\mathcal{A}^{-}\Delta Q_{i-1/2} + \mathcal{A}^{+}\Delta Q_{i-1/2} = \sum s_{i-1/2}^{p} \mathcal{W}_{i-1/2}^{p} = A \sum \mathcal{W}_{i-1/2}^{p}.$$

Roe average \hat{A} can be determined analytically for many important nonlinear systems (e.g. Euler, shallow water). R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Approximate solution to single wave

Suppose q_{ℓ} lies on some Hugoniot locus of q_r (and vice versa!):

$$Q_{i-1/2} = \frac{1}{2}(Q_{i-1} + Q_i)$$

 $\hat{Q}_{i-1/2} = \mathsf{Roe} \text{ average}$

Straight lines are eigendirections of $f'(\hat{Q}_{i-1/2})$.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Fig. 15.2]

Approximate Riemann Solvers

How to use?

One approach: determine $Q^* =$ state along x/t = 0,

$$Q^* = Q_{i-1} + \sum_{p:s^p < 0} \mathcal{W}^p, \quad F_{i-1/2} = f(Q^*),$$

$$\mathcal{A}^{-}\Delta Q = F_{i-1/2} - f(Q_{i-1}), \quad \mathcal{A}^{+}\Delta Q = f(Q_i) - F_{i-1/2}.$$

Wave-propagation algorithm uses:

$$\mathcal{A}^{-}\Delta Q = \sum_{p:s^{p} < 0} s^{p} \mathcal{W}^{p}, \qquad \mathcal{A}^{+}\Delta Q = \sum_{p:s^{p} > 0} s^{p} \mathcal{W}^{p}.$$

Conservative only if $\mathcal{A}^{-}\Delta Q + \mathcal{A}^{+}\Delta Q = f(Q_i) - f(Q_{i-1})$.

This holds for Roe solver.

	R.J. LeVeque,	University of Washington	AMath 574, March 7, 2011	[FVMHP Fig. 15.2]
Notes:				

Approximate Riemann solvers

For a scalar problem, we can easily satisfy the Roe condition

$$\hat{A}_{i-1/2}(Q_i - Q_{i-1}) = f(Q_i) - f(Q_{i-1}).$$

by choosing

$$\hat{A}_{i-1/2} = \frac{f(Q_i) - f(Q_{i-1})}{Q_i - Q_{i-1}}$$

Then $r_{i-1/2}^1 = 1$ and $s_{i-1/2}^1 = \hat{A}_{i-1/2}$ (scalar!).

Note: This is the Rankine-Hugoniot shock speed.

 \implies shock waves are correct, rarefactions replaced by entropy-violating shocks.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 12.2]

Shallow water equations

h(x,t) = depth

u(x,t) = velocity (depth averaged, varies only with x)

Conservation of mass and momentum $h\boldsymbol{u}$ gives system of two equations.

mass flux =hu, momentum flux =(hu)u+p where $p={\rm hydrostatic}$ pressure

$$h_t + (hu)_x = 0$$
$$(hu)_t + \left(hu^2 + \frac{1}{2}gh^2\right)_x = 0$$

Jacobian matrix:

$$f'(q) = \begin{bmatrix} 0 & 1\\ gh - u^2 & 2u \end{bmatrix}, \qquad \lambda = u \pm \sqrt{gh}.$$

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 13.1]

Roe solver for Shallow Water

Given h_l , u_l , h_r , u_r , define

$$\bar{h} = \frac{h_l + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_l}u_l + \sqrt{h_r}u_r}{\sqrt{h_l} + \sqrt{hr}}$$

Then

 $\hat{A} =$ Jacobian matrix evaluated at this average state

satisfies

$$A(q_r - q_l) = f(q_r) - f(q_l)$$

- Roe condition is satisfied,
- Isolated shock modeled well,
- Wave propagation algorithm is conservative,
- High resolution methods obtained using corrections with limited waves.

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3]

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 13.1] Notes: R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3]

Roe solver for Shallow Water

Given h_l , u_l , h_r , u_r , define

$$\bar{h} = \frac{h_l + h_r}{2}, \quad \hat{u} = \frac{\sqrt{h_l}u_l + \sqrt{h_r}u_l}{\sqrt{h_l} + \sqrt{h_r}}$$

Eigenvalues of $\hat{A} = f'(\hat{q})$ are:

$$\hat{\lambda}^1 = \hat{u} - \hat{c}, \quad \hat{\lambda}^2 = \hat{u} + \hat{c}, \quad \hat{c} = \sqrt{g\bar{h}}.$$

Eigenvectors:

$$\hat{r}^1 = \begin{bmatrix} 1\\ \hat{u} - \hat{c} \end{bmatrix}, \qquad \hat{r}^2 = \begin{bmatrix} 1\\ \hat{u} + \hat{c} \end{bmatrix}.$$

Examples in Clawpack 4.3 to be converted soon!

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.3]

Potential failure of linearized solvers

Consider shallow water with $h_{\ell} = h_r$ and $u_r = -u_{\ell} \gg 1$. Outflow away from interface \implies small intermediate h_m .

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.6]

HLL Solver

Harten – Lax – van Leer (1983): Use only 2 waves with $s^1 =$ minimum characteristic speed $s^2 =$ maximum characteristic speed

$$\mathcal{W}^1 = Q^* - Q_\ell, \qquad \mathcal{W}^2 = Q_r - Q^*$$

Conservation implies unique value for middle state Q^* :

$$s^1 \mathcal{W}^1 + s^2 \mathcal{W}^2 = f(Q_r) - f(Q_\ell)$$

$$\implies Q^* = \frac{f(Q_r) - f(Q_\ell) - s^2 Q_r + s^1 Q_\ell}{s^1 - s^2}.$$

Choice of speeds:

· Max and min of expected speeds over entire problem,

• Max and min of eigenvalues of $f'(Q_{\ell})$ and $f'(Q_r)$.

Mataa				
Notes:				
	R.J. LeVeque,	University of Washington	AMath 574, March 7, 2011	[FVMHP Sec. 15.3.3
N.L. 1				
Notes:				

Notes: B.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [FVMHP Sec. 15.3.6]

HLLE Solver

Einfeldt: Choice of speeds for gas dynamics (or shallow water) that guarantees positivity.

Based on characteristic speeds and Roe averages:

$$s_{i-1/2}^{1} = \min_{p}(\min(\lambda_{i}^{p}, \hat{\lambda}_{i-1/2}^{p})),$$

$$s_{i-1/2}^{2} = \max_{p}(\max(\lambda_{i+1}^{p}, \hat{\lambda}_{i-1/2}^{p})).$$

where

 λ_i^p is the *p*th eigenvalue of the Jacobian $f'(Q_i)$,

 $\hat{\lambda}_{i-1/2}^p$ is the pth eigenvalue using Roe average $f'(\hat{Q}_{i-1/2})$

R.J. LeVeque, University of Washington AMath 574, March 7, 2011 [Sec. 15.3]

Notes:				
	R.J. LeVeque,	University of Washington	AMath 574, March 7, 2011	[Sec. 15.3]