
AMath 574 February 28, 2011

Today:
• Another example nonlinear system: Burgers’ + Advection
• Shallow water Riemann solution

Next Monday:
• Finite volume methods
• Approximate Riemann solvers

Reading: Chapter 15

R.J. LeVeque, University of Washington AMath 574, February 28, 2011



Burgers’ + advection

Another example of a nonlinear system:

q =
[
u
v

]
, f(q) =

[
1
2(u2)

(u+ 1)v

]
.

This is simply Burgers’ equation

ut +
1
2
(u2)x = 0

coupled to conservative advection

vt + ((u+ 1)v)x = 0

But... Advection velocity u+ 1 comes from solution of
Burgers’ equation.
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Burgers’ + advection

Solving ut + 1
2(u2)x = 0 gives rarefaction wave (if ul < ur)

or shock wave with speed s1 = 1
2(ul + ur) (if ul > ur).

Advection equation can be rewritten as

vt + (u+ 1)vx = −uxv

and characteristic theory shows that

d

dt
v(X(t), t) = −ux(X(t), t)v(X(t), t)

along the curve X ′(t) = u(X(t), t) + 1.

In regions where u is constant:
Characteristics are straight lines,
ux = 0 =⇒ v is constant.
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Burgers’ + advection

d

dt
v(X(t), t) = −ux(X(t), t)v(X(t), t)

along the curve X ′(t) = u(X(t), t) + 1.

If u has a shock, then source term in v has form of delta
function.

If delta moves a different speed than advection velocity, this
leads to a jump in v at the shock location.

Resonant case: If shock moves at same speed as advection
velocity then delta function is stationary relative to advecting v
and we expect solution to blow up!
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Burgers’ + advection

Reconsider as nonlinear system:

q =
[
u
v

]
, f(q) =

[
1
2(u2)

(u+ 1)v

]
.

Jacobian matrix:

f ′(q) =
[
u 0
v u+ 1

]
.

Always hyperbolic since u 6= u+ 1.

λ1 = u, r1 =
[

1
−v

]
, ∇λ1 · r1 ≡ 1, genuinely nonlinear

λ2 = u+1, r2 =
[

0
1

]
, ∇λ2 ·r2 ≡ 0, linearly degenerate
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Burgers’ + advection: 2-waves

λ2 = u+1, r2 =
[

0
1

]
, ∇λ2 ·r2 ≡ 0, linearly degenerate

Integral curves:

ũ′(ξ) = 0 =⇒ ũ(ξ) = u∗

ṽ′(ξ) = v(ξ) =⇒ ṽ(ξ) = v∗e
ξ

Integral curves are vertical lines.

These lines are also contours of λ2 (linearly degenerate!)

We’ll see later these are also the Hugoniot loci for 2-waves.
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Burgers’ + advection: 1-waves

λ1 = u, r1 =
[

1
−v

]
, ∇λ1 · r1 ≡ 1, genuinely nonlinear

Integral curves:

ũ′(ξ) = 1 =⇒ ũ(ξ) = u∗ + ξ

=⇒ ξ = ũ− u∗

ṽ′(ξ) = −v(ξ) =⇒ ṽ(ξ) = v∗e
−ξ

=⇒ ṽ = v∗e
u∗−ũ.
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Burgers’ + advection: Hugoniot loci

q =
[
u
v

]
, f(q) =

[
1
2(u2)

(u+ 1)v

]
.

States q and q∗ must satisfy Rankine-Hugoniot jump condition:

f(q)− f(q∗) = s(q − q∗)

First equation gives:

1
2
(u2 − u2

∗) = s(u− u∗) =⇒ 1
2
(u+ u∗)(u− u∗) = s(u− u∗).

One solution:

u = u∗ (and jump in v arbitrary) =⇒ vertical lines

These are Hugoniot loci for 2-waves.

2-waves are discontinuities in v alone, speed s = u∗ + 1
(determined from second equation of R-H conditions).
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Burgers’ + advection: Hugoniot loci

1
2
(u2 − u2

∗) = s(u− u∗) =⇒ 1
2
(u+ u∗)(u− u∗) = s(u− u∗).

Second solution:

s = s1 =
1
2
(u+ u∗) =⇒ shock waves in Burgers’ equation

Relation between v and u across shock:

Second equation of R-H relation:

(u+ 1)v − (u∗ + 1)v∗ = s(v − v∗)

=
1
2
(u+ u∗)(v − v∗)

=⇒ v =

(
1 + 1

2(u∗ − u)
1− 1

2(u∗ − u)

)
v∗

≈ eu∗−uv∗

The Hugoniot locus agrees to O(|u∗ − u|3) with integral curve.
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Burgers’ + advection: Phase plane
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Burgers’ + advection: Phase plane

But note that

v =

(
1 + 1

2(u∗ − u)
1− 1

2(u∗ − u)

)
v∗ →∞ as u→ u∗ − 2

R.J. LeVeque, University of Washington AMath 574, February 28, 2011 [FVMHP Chap. 13]



Burgers’ + advection: Riemann solution

To be discussed on the board...

See also the description and codes at
http://www.clawpack.org/links/burgersadv

R.J. LeVeque, University of Washington AMath 574, February 28, 2011 [FVMHP Chap. 13]

http://www.clawpack.org/links/burgersadv
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