AMath 574 February 28, 2011

Today:

- Another example nonlinear system: Burgers' + Advection
- Shallow water Riemann solution

Next Monday:

- Finite volume methods
- Approximate Riemann solvers

Reading: Chapter 15

Burgers' + advection

Another example of a nonlinear system:

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

This is simply Burgers' equation

$$
u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0
$$

coupled to conservative advection

$$
v_{t}+((u+1) v)_{x}=0
$$

But... Advection velocity $u+1$ comes from solution of Burgers' equation.

Burgers' + advection

Solving $u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0$ gives rarefaction wave (if $u_{l}<u_{r}$) or shock wave with speed $s^{1}=\frac{1}{2}\left(u_{l}+u_{r}\right)$ (if $\left.u_{l}>u_{r}\right)$.

Burgers' + advection

Solving $u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0$ gives rarefaction wave (if $u_{l}<u_{r}$) or shock wave with speed $s^{1}=\frac{1}{2}\left(u_{l}+u_{r}\right)$ (if $\left.u_{l}>u_{r}\right)$.

Advection equation can be rewritten as

$$
v_{t}+(u+1) v_{x}=-u_{x} v
$$

and characteristic theory shows that

$$
\frac{d}{d t} v(X(t), t)=-u_{x}(X(t), t) v(X(t), t)
$$

along the curve $X^{\prime}(t)=u(X(t), t)+1$.

Burgers' + advection

Solving $u_{t}+\frac{1}{2}\left(u^{2}\right)_{x}=0$ gives rarefaction wave (if $u_{l}<u_{r}$)
or shock wave with speed $s^{1}=\frac{1}{2}\left(u_{l}+u_{r}\right)$ (if $\left.u_{l}>u_{r}\right)$.
Advection equation can be rewritten as

$$
v_{t}+(u+1) v_{x}=-u_{x} v
$$

and characteristic theory shows that

$$
\frac{d}{d t} v(X(t), t)=-u_{x}(X(t), t) v(X(t), t)
$$

along the curve $X^{\prime}(t)=u(X(t), t)+1$.
In regions where u is constant:
Characteristics are straight lines,
$u_{x}=0 \Longrightarrow v$ is constant.

Burgers' + advection

$$
\frac{d}{d t} v(X(t), t)=-u_{x}(X(t), t) v(X(t), t)
$$

along the curve $X^{\prime}(t)=u(X(t), t)+1$.
If u has a shock, then source term in v has form of delta function.

Burgers' + advection

$$
\frac{d}{d t} v(X(t), t)=-u_{x}(X(t), t) v(X(t), t)
$$

along the curve $X^{\prime}(t)=u(X(t), t)+1$.
If u has a shock, then source term in v has form of delta function.

If delta moves a different speed than advection velocity, this leads to a jump in v at the shock location.

Burgers' + advection

$$
\frac{d}{d t} v(X(t), t)=-u_{x}(X(t), t) v(X(t), t)
$$

along the curve $X^{\prime}(t)=u(X(t), t)+1$.
If u has a shock, then source term in v has form of delta function.

If delta moves a different speed than advection velocity, this leads to a jump in v at the shock location.

Resonant case: If shock moves at same speed as advection velocity then delta function is stationary relative to advecting v and we expect solution to blow up!

Burgers' + advection

Reconsider as nonlinear system:

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
u & 0 \\
v & u+1
\end{array}\right] .
$$

Always hyperbolic since $u \neq u+1$.

Burgers' + advection

Reconsider as nonlinear system:

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
u & 0 \\
v & u+1
\end{array}\right] .
$$

Always hyperbolic since $u \neq u+1$.

$$
\lambda^{1}=u, \quad r^{1}=\left[\begin{array}{r}
1 \\
-v
\end{array}\right], \quad \nabla \lambda^{1} \cdot r^{1} \equiv 1, \quad \text { genuinely nonlinear }
$$

Burgers' + advection

Reconsider as nonlinear system:

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

Jacobian matrix:

$$
f^{\prime}(q)=\left[\begin{array}{cc}
u & 0 \\
v & u+1
\end{array}\right] .
$$

Always hyperbolic since $u \neq u+1$.
$\lambda^{1}=u, \quad r^{1}=\left[\begin{array}{r}1 \\ -v\end{array}\right], \quad \nabla \lambda^{1} \cdot r^{1} \equiv 1, \quad$ genuinely nonlinear
$\lambda^{2}=u+1, \quad r^{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad \nabla \lambda^{2} \cdot r^{2} \equiv 0, \quad$ linearly degenerate

Burgers' + advection: 2-waves

$\lambda^{2}=u+1, \quad r^{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad \nabla \lambda^{2} \cdot r^{2} \equiv 0, \quad$ linearly degenerate
Integral curves:

$$
\begin{aligned}
\tilde{u}^{\prime}(\xi)=0 & \Longrightarrow \tilde{u}(\xi)=u_{*} \\
\tilde{v}^{\prime}(\xi)=v(\xi) & \Longrightarrow \tilde{v}(\xi)=v_{*} e^{\xi}
\end{aligned}
$$

Integral curves are vertical lines.

Burgers' + advection: 2-waves

$\lambda^{2}=u+1, \quad r^{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right], \quad \nabla \lambda^{2} \cdot r^{2} \equiv 0, \quad$ linearly degenerate
Integral curves:

$$
\begin{aligned}
\tilde{u}^{\prime}(\xi)=0 & \Longrightarrow \tilde{u}(\xi)=u_{*} \\
\tilde{v}^{\prime}(\xi)=v(\xi) & \Longrightarrow \tilde{v}(\xi)=v_{*} e^{\xi}
\end{aligned}
$$

Integral curves are vertical lines.
These lines are also contours of λ^{2} (linearly degenerate!)
We'll see later these are also the Hugoniot loci for 2-waves.

Burgers' + advection: 1-waves

$$
\lambda^{1}=u, \quad r^{1}=\left[\begin{array}{r}
1 \\
-v
\end{array}\right], \quad \nabla \lambda^{1} \cdot r^{1} \equiv 1, \quad \text { genuinely nonlinear }
$$

Integral curves:

$$
\begin{aligned}
\tilde{u}^{\prime}(\xi)=1 & \Longrightarrow \tilde{u}(\xi)=u_{*}+\xi \\
\tilde{v}^{\prime}(\xi)=-v(\xi) & \Longrightarrow \tilde{v}(\xi)=v_{*} e^{-\xi}
\end{aligned}
$$

Burgers' + advection: 1-waves

$\lambda^{1}=u, \quad r^{1}=\left[\begin{array}{r}1 \\ -v\end{array}\right], \quad \nabla \lambda^{1} \cdot r^{1} \equiv 1, \quad$ genuinely nonlinear
Integral curves:

$$
\begin{aligned}
\tilde{u}^{\prime}(\xi)=1 & \Longrightarrow \tilde{u}(\xi)=u_{*}+\xi \quad \Longrightarrow \xi=\tilde{u}-u_{*} \\
\tilde{v}^{\prime}(\xi)=-v(\xi) & \Longrightarrow \tilde{v}(\xi)=v_{*} e^{-\xi}
\end{aligned}
$$

Burgers' + advection: 1-waves

$\lambda^{1}=u, \quad r^{1}=\left[\begin{array}{r}1 \\ -v\end{array}\right], \quad \nabla \lambda^{1} \cdot r^{1} \equiv 1, \quad$ genuinely nonlinear
Integral curves:

$$
\begin{array}{ll}
\tilde{u}^{\prime}(\xi)=1 & \Longrightarrow \tilde{u}(\xi)=u_{*}+\xi
\end{array} \quad \Longrightarrow \xi=\tilde{u}-u_{*} .
$$

Burgers' + advection: Hugoniot loci

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

States q and q_{*} must satisfy Rankine-Hugoniot jump condition:

$$
f(q)-f\left(q_{*}\right)=s\left(q-q_{*}\right)
$$

Burgers' + advection: Hugoniot loci

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

States q and q_{*} must satisfy Rankine-Hugoniot jump condition:

$$
f(q)-f\left(q_{*}\right)=s\left(q-q_{*}\right)
$$

First equation gives:

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right) .
$$

Burgers' + advection: Hugoniot loci

$$
q=\left[\begin{array}{l}
u \\
v
\end{array}\right], \quad f(q)=\left[\begin{array}{c}
\frac{1}{2}\left(u^{2}\right) \\
(u+1) v
\end{array}\right] .
$$

States q and q_{*} must satisfy Rankine-Hugoniot jump condition:

$$
f(q)-f\left(q_{*}\right)=s\left(q-q_{*}\right)
$$

First equation gives:

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right)
$$

One solution:

$$
u=u_{*}(\text { and jump in } v \text { arbitrary }) \Longrightarrow \text { vertical lines }
$$

These are Hugoniot loci for 2-waves.
2-waves are discontinuities in v alone, speed $s=u_{*}+1$
(determined from second equation of R-H conditions).

Burgers' + advection: Hugoniot loci

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right)
$$

Second solution:

$$
s=s^{1}=\frac{1}{2}\left(u+u_{*}\right) \Longrightarrow \text { shock waves in Burgers' equation }
$$

Burgers' + advection: Hugoniot loci

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right)
$$

Second solution:

$$
s=s^{1}=\frac{1}{2}\left(u+u_{*}\right) \Longrightarrow \text { shock waves in Burgers' equation }
$$

Relation between v and u across shock:
Second equation of R-H relation:

$$
(u+1) v-\left(u_{*}+1\right) v_{*}=s\left(v-v_{*}\right)=\frac{1}{2}\left(u+u_{*}\right)\left(v-v_{*}\right)
$$

Burgers' + advection: Hugoniot loci

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right)
$$

Second solution:

$$
s=s^{1}=\frac{1}{2}\left(u+u_{*}\right) \Longrightarrow \text { shock waves in Burgers' equation }
$$

Relation between v and u across shock:
Second equation of R-H relation:

$$
\begin{gathered}
(u+1) v-\left(u_{*}+1\right) v_{*}=s\left(v-v_{*}\right)=\frac{1}{2}\left(u+u_{*}\right)\left(v-v_{*}\right) \\
\Longrightarrow \quad v=\left(\frac{1+\frac{1}{2}\left(u_{*}-u\right)}{1-\frac{1}{2}\left(u_{*}-u\right)}\right) v_{*}
\end{gathered}
$$

Burgers' + advection: Hugoniot loci

$$
\frac{1}{2}\left(u^{2}-u_{*}^{2}\right)=s\left(u-u_{*}\right) \Longrightarrow \frac{1}{2}\left(u+u_{*}\right)\left(u-u_{*}\right)=s\left(u-u_{*}\right)
$$

Second solution:

$$
s=s^{1}=\frac{1}{2}\left(u+u_{*}\right) \Longrightarrow \text { shock waves in Burgers' equation }
$$

Relation between v and u across shock:
Second equation of R-H relation:

$$
\begin{gathered}
(u+1) v-\left(u_{*}+1\right) v_{*}=s\left(v-v_{*}\right)=\frac{1}{2}\left(u+u_{*}\right)\left(v-v_{*}\right) \\
\Longrightarrow \quad v=\left(\frac{1+\frac{1}{2}\left(u_{*}-u\right)}{1-\frac{1}{2}\left(u_{*}-u\right)}\right) v_{*} \approx e^{u_{*}-u} v_{*}
\end{gathered}
$$

The Hugoniot locus agrees to $\mathcal{O}\left(\left|u_{*}-u\right|^{3}\right)$ with integral curve.

Burgers' + advection: Phase plane

Burgers' + advection: Phase plane

But note that

$$
v=\left(\frac{1+\frac{1}{2}\left(u_{*}-u\right)}{1-\frac{1}{2}\left(u_{*}-u\right)}\right) v_{*} \quad \rightarrow \infty \quad \text { as } u \rightarrow u_{*}-2
$$

Burgers' + advection: Riemann solution

To be discussed on the board...

See also the description and codes at
http://www.clawpack.org/links/burgersadv

