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• Rarefaction waves
• Genuine nonlinearity
• Linear degeneracy
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• Approximate Riemann solvers
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Simple waves

After separation, before shock formation:

Left- and right-going waves look like solutions to scalar
equation.

Simple waves: q varies along an integral curve of rp(q).
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Integral curves of rp

Curves in phase plane that are tangent to rp(q) at each q.

q̃(ξ): curve through phase space parameterized by ξ ∈ lR.

Satisfying q̃′(ξ) = α(ξ)rp(q̃(ξ)) for some scalar α(ξ).

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.12]
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1-waves: integral curves of r1

q̃(ξ): curve through phase space parameterized by ξ ∈ lR.

Satisfies q̃′(ξ) = α(ξ)r1(q̃(ξ)) for some scalar α(ξ).

Choose α(ξ) ≡ 1 and obtain
[

(q̃1)′

(q̃2)′

]
= q̃′(ξ) = r1(q̃(ξ)) =

[
1

q̃2/q̃1 −
√
gq̃1

]

This is a system of 2 ODEs

First equation: q̃1(ξ) = ξ =⇒ ξ = h.
Second equation =⇒ (q̃2)′ = q̃2(ξ)/ξ −√gξ.
Require q̃2(h∗) = h∗u∗ =⇒

q̃2(ξ) = ξu∗ + 2ξ
(√

gh∗ −
√
gξ
)
.
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1-wave integral curves of rp

So

q̃1(ξ) = ξ,

q̃2(ξ) = ξu∗ + 2ξ
(√

gh∗ −
√
gξ
)
.

and hence
hu = hu∗ + 2h

(√
gh∗ −

√
gh
)
.

Similarly, 2-wave integral curves satisfy

hu = hu∗ − 2h
(√

gh∗ −
√
gh
)
.
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Integral curves of rp versus Hugoniot loci

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.7]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.7]



Integral curves of rp versus Hugoniot loci

Solution to Riemann problem depends on which state is ql, qr.
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Riemann invariants

Along a 1-wave integral curve,

u = u∗ + 2
(√

gh∗ −
√
gh
)

and hence
u+ 2

√
gh = u∗ + 2

√
gh∗.

So at every point on the integral curve through (h∗, h∗u∗)

w1(q) = u+ 2
√
gh

has the constant value w1(q) ≡ w1(q∗) = u+ 2
√
gh.

The function w1(q) is a 1-Riemann invariant for this system.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.2]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.2]

Riemann invariants

1-Riemann invariants:

w1(q) = u+ 2
√
gh

has the constant value w1(q) ≡ w1(q∗) = u∗ + 2
√
gh∗

at every point on any integral curve of r1(q).

The integral curves are contour lines of w1(q).

2-Riemann invariants:

w2(q) = u− 2
√
gh

has the constant value w2(q) ≡ w2(q∗) = u∗ − 2
√
gh∗

at every point on any integral curve of r2(q).
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Rarefaction waves

Centered rarefaction wave:

Similarity solution with piecewise constant initial data:

q(x, t) =





ql if x/t ≤ ξ1
q̃(x/t) if ξ1 ≤ x/t ≤ ξ2
qr if x/t ≥ ξ2,

where ql and qr are two points on a single integral curve with
λp(ql) < λp(qr).

Required so that characteristics spread out as time advances.

Also want λp(q) monotonically increasing from ql to qr.

This genuine nonlinearity generalizes convexity of scalar flux.
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Genuine nonlinearity

For scalar problem qt + f(q)x = 0, want f ′′(q) 6= 0 everywhere.

This implies that f ′(q) is monotonically increasing or
decreasing between ql and qr.

Shock if decreasing, Rarefaction if increasing.

For system we want λp(q) to be monotonically varying along
integral curve of rp(q).

If so then this field is genuinely nonlinear.

This requires ∇λp(q) · rp(q) 6= 0.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]
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Genuine nonlinearity of shallow water equations

1-waves: Requires ∇λ1(q) · r1(q) 6= 0.

λ1 = u−
√
gh = q2/q1 −

√
gq1,

∇λ1 =
[
−q2/(q1)2 − 1

2

√
g/q1

1/q1

]
,

r1 =
[

1
q2/q1 −

√
gq1

]
,

and hence

∇λ1 · r1 = −3
2

√
g/q1 = −3

2

√
g/h

< 0 for all h > 0.
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Genuine nonlinearity of shallow water equations

Integral curves (heavy line) and contours of λ1:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.13]

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.13]

Linearly degenerate fields

Scalar advection: qt + uqx = 0 with u = constant.

Characteristics X(t) = x0 + ut are parallel.

Discontinuity propagates along a characteristic curve.

Characteristics on either side are parallel so not a shock!

For system the analogous property arises if

∇λp(q) · rp(q) ≡ 0

holds for all q, in which case
λp is constant along each integral curve.

Then pth field is said to be linearly degenerate.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]
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The Riemann problem
Dam break problem for shallow water equations

ht + (hu)x = 0

(hu)t +
(
hu2 +

1
2
gh2
)
x

= 0

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Chap. 13.12.1]
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Shallow water with passive tracer

Let φ(x, t) be tracer concentration and add equation

φt + uφx = 0 =⇒ (hφ)t + (uhφ)x = 0.

Gives:

q =

[
h
hu
hφ

]
=

[
q1

q2

q3

]
, f(q) =

[
hu

hu2 + 1
2gh

2

uhφ

]
=

[
q2

(q2)/q1 + 1
2g(q

1)2
q2q3/q1

]
.

Jacobian:

f ′(q) =




0 1 0
−u2 + gh 2u 0
−uφ φ u


 .
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Shallow water with passive tracer

f ′(q) =

[
0 1 0

−u2 + gh 2u 0
−uφ φ u

]
.

λ1 = u−√gh, λ2 = u, λ3 = u+
√
gh,

r1 =

[
1

u−√gh
φ

]
, r2 =

[ 0
0
1

]
, r3 =

[
1

u+
√
gh

φ

]
.

λ2 = u = (hu)/h =⇒ ∇λ2 =



−u/h
1/h
0


 =⇒ λ2 · r2 ≡ 0.

So 2nd field is linearly degenerate.
(Fields 1 and 3 are genuinely nonlinear.)
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