

1-waves: integral curves of r^1	Notes:	
$ ilde{q}(\xi)$: curve through phase space parameterized by $\xi\in {\rm I\!R}.$		
Satisfies $\tilde{q}'(\xi) = \alpha(\xi)r^1(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.		
Choose $\alpha(\xi) \equiv 1$ and obtain		
$\begin{bmatrix} (\tilde{q}^1)'\\ (\tilde{q}^2)' \end{bmatrix} = \tilde{q}'(\xi) = r^1(\tilde{q}(\xi)) = \begin{bmatrix} 1\\ \tilde{q}^2/\tilde{q}^1 - \sqrt{g\tilde{q}^1} \end{bmatrix}$		
This is a system of 2 ODEs		
First equation: $\tilde{q}^1(\xi) = \xi \implies \xi = h$. Second equation $\implies (\tilde{q}^2)' = \tilde{q}^2(\xi)/\xi - \sqrt{g\xi}$.		
Require $\tilde{q}^2(h_*) = h_* u_* \implies$		
$ ilde{q}^2(\xi) = \xi u_* + 2\xi \left(\sqrt{gh_*} - \sqrt{g\xi} ight).$		
R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]	R.J. LeVeque, University of Washington	AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]
1-wave integral curves of r^p	Notes:	
So		
$ ilde{q}^1(\xi) = \xi,$		
$ ilde{q}^2(\xi) = \xi u_* + 2 \xi \left(\sqrt{g h_*} - \sqrt{g \xi} ight).$		
and hence		
$hu = hu_* + 2h\left(\sqrt{gh_*} - \sqrt{gh}\right).$		
Similarly, 2-wave integral curves satisfy		
$hu = hu - 2h\left(\sqrt{ah} - \sqrt{ah}\right)$		
$hau = hau_* - 2h\left(\sqrt{gh_*} - \sqrt{gh}\right)$.		
R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]	R.J. LeVeque, University of Washington	AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]
Integral curves of r^p versus Hugoniot loci	Notes:	
Phase plane		
2 - 1-wave locus - 2-wave locus - 1-wave integral curve - 2-wave integral curve		
-2		

h = depth

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.2]

Rarefaction waves

Centered rarefaction wave:

Similarity solution with piecewise constant initial data:

$$q(x,t) = \begin{cases} q_l & \text{if } x/t \leq \xi_1 \\ \tilde{q}(x/t) & \text{if } \xi_1 \leq x/t \leq \xi_2 \\ q_r & \text{if } x/t \geq \xi_2, \end{cases}$$

where q_l and q_r are two points on a single integral curve with $\lambda^p(q_l) < \lambda^p(q_r)$.

Required so that characteristics spread out as time advances. Also want $\lambda^p(q)$ monotonically increasing from q_l to q_r .

This genuine nonlinearity generalizes convexity of scalar flux.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.5]

Genuine nonlinearity

For scalar problem $q_t + f(q)_x = 0$, want $f''(q) \neq 0$ everywhere.

This implies that f'(q) is monotonically increasing or decreasing between q_l and q_r .

Shock if decreasing, Rarefaction if increasing.

For system we want $\lambda^p(q)$ to be monotonically varying along integral curve of $r^p(q)$.

If so then this field is genuinely nonlinear.

This requires $\nabla \lambda^p(q) \cdot r^p(q) \neq 0$.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]

Genuine nonlinearity of shallow water equations

1-waves: Requires $\nabla \lambda^1(q) \cdot r^1(q) \neq 0$.

$$\begin{split} \lambda^1 &= u - \sqrt{gh} = q^2/q^1 - \sqrt{gq^1}, \\ \nabla \lambda^1 &= \left[\begin{array}{c} -q^2/(q^1)^2 - \frac{1}{2}\sqrt{g/q^1} \\ 1/q^1 \end{array} \right], \\ r^1 &= \left[\begin{array}{c} 1 \\ q^2/q^1 - \sqrt{gq^1} \end{array} \right], \end{split}$$

and hence

$$\nabla \lambda^1 \cdot r^1 = -\frac{3}{2}\sqrt{g/q^1} = -\frac{3}{2}\sqrt{g/h}$$

< 0 for all $h > 0$.

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]

Notes: Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]

Shallow water with passive tracer

Let $\phi(x,t)$ be tracer concentration and add equation

$$\phi_t + u\phi_x = 0 \implies (h\phi)_t + (uh\phi)_x = 0.$$

Gives:

$$q = \left[\begin{array}{c} h\\ hu\\ h\phi \end{array} \right] = \left[\begin{array}{c} q^1\\ q^2\\ q^3 \end{array} \right], \quad f(q) = \left[\begin{array}{c} hu\\ hu^2 + \frac{1}{2}gh^2\\ uh\phi \end{array} \right] = \left[\begin{array}{c} (q^2)/q^1 + \frac{1}{2}g(q^1)^2\\ q^2q^3/q^1 \end{array} \right].$$

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.12.1]

Jacobian:

$$f'(q) = \begin{bmatrix} 0 & 1 & 0 \\ -u^2 + gh & 2u & 0 \\ -u\phi & \phi & u \end{bmatrix}$$

Shallow water with passive tracer

$$f'(q) = \begin{bmatrix} 0 & 1 & 0 \\ -u^2 + gh & 2u & 0 \\ -u\phi & \phi & u \end{bmatrix}.$$
$$\lambda^1 = u - \sqrt{gh}, \qquad \lambda^2 = u, \qquad \lambda^3 = u + \sqrt{gh},$$
$$r^1 = \begin{bmatrix} u - \frac{1}{\sqrt{gh}} \\ 0 \end{bmatrix}, \quad r^2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad r^3 = \begin{bmatrix} 1 \\ u - \frac{1}{\sqrt{gh}} \\ \phi \end{bmatrix}.$$
$$\lambda^2 = u = (hu)/h \implies \nabla\lambda^2 = \begin{bmatrix} -u/h \\ 1/h \\ 0 \end{bmatrix} \implies \lambda^2 \cdot r^2 \equiv 0.$$
So 2nd field is linearly degenerate.

(Fields 1 and 3 are genuinely nonlinear.)

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.12.1]

Notes: R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.12.1]

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.12.1]