AMath 574 February 25, 2011
Today: - Integral curves - Simple waves - Rarefaction waves - Genuine nonlinearity - Linear degeneracy
Monday: - Finite volume methods - Approximate Riemann solvers Reading: Chapter 15
R.J. Leveque, Univesity of Wastington ANath 57, Febray 25.2011

Simple waves

After separation, before shock formation:
Left- and right-going waves look like solutions to scalar equation.
Simple waves: q varies along an integral curve of $r^{p}(q)$.
R.J. LeVeque, University of Washington

AMath 574 , February 25,2011 [FVMHP Sec. 13.8]

Integral curves of r^{p}

Curves in phase plane that are tangent to $r^{p}(q)$ at each q.

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfying $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{p}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011

Notes:

Notes:

1-waves: integral curves of r^{1}

$\tilde{q}(\xi)$: curve through phase space parameterized by $\xi \in \mathbb{R}$.
Satisfies $\tilde{q}^{\prime}(\xi)=\alpha(\xi) r^{1}(\tilde{q}(\xi))$ for some scalar $\alpha(\xi)$.
Choose $\alpha(\xi) \equiv 1$ and obtain

$$
\left[\begin{array}{l}
\left(\tilde{q}^{1}\right)^{\prime} \\
\left(\tilde{q}^{2}\right)^{\prime}
\end{array}\right]=\tilde{q}^{\prime}(\xi)=r^{1}(\tilde{q}(\xi))=\left[\begin{array}{c}
1 \\
\tilde{q}^{2} / \tilde{q}^{1}-\sqrt{g \tilde{q}^{1}}
\end{array}\right]
$$

This is a system of 2 ODEs
First equation: $\tilde{q}^{1}(\xi)=\xi \Longrightarrow \xi=h$.
Second equation $\Longrightarrow\left(\tilde{q}^{2}\right)^{\prime}=\tilde{q}^{2}(\xi) / \xi-\sqrt{g \xi}$.
Require $\tilde{q}^{2}\left(h_{*}\right)=h_{*} u_{*} \Longrightarrow$

$$
\tilde{q}^{2}(\xi)=\xi u_{*}+2 \xi\left(\sqrt{g h_{*}}-\sqrt{g \xi}\right) .
$$

R.J. LeVeque, University of Washington

AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]

1-wave integral curves of r^{p}

So

$$
\begin{aligned}
& \tilde{q}^{1}(\xi)=\xi, \\
& \tilde{q}^{2}(\xi)=\xi u_{*}+2 \xi\left(\sqrt{g h_{*}}-\sqrt{g \xi}\right) .
\end{aligned}
$$

and hence

$$
h u=h u_{*}+2 h\left(\sqrt{g h_{*}}-\sqrt{g h}\right) .
$$

Similarly, 2-wave integral curves satisfy

$$
h u=h u_{*}-2 h\left(\sqrt{g h_{*}}-\sqrt{g h}\right) .
$$

Integral curves of r^{p} versus Hugoniot loci

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.1]

Notes:

Notes:

Integral curves of r^{p} versus Hugoniot loci

Solution to Riemann problem depends on which state is q_{l}, q_{r}.
R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.7]

Riemann invariants

Along a 1-wave integral curve,

$$
u=u_{*}+2\left(\sqrt{g h_{*}}-\sqrt{g h}\right)
$$

and hence

$$
u+2 \sqrt{g h}=u_{*}+2 \sqrt{g h_{*}} .
$$

So at every point on the integral curve through $\left(h_{*}, h_{*} u_{*}\right)$

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u+2 \sqrt{g h}$.
The function $w^{1}(q)$ is a 1-Riemann invariant for this system.

Riemann invariants

1-Riemann invariants:

$$
w^{1}(q)=u+2 \sqrt{g h}
$$

has the constant value $w^{1}(q) \equiv w^{1}\left(q_{*}\right)=u_{*}+2 \sqrt{g h_{*}}$ at every point on any integral curve of $r^{1}(q)$.
The integral curves are contour lines of $w^{1}(q)$.

2-Riemann invariants:

$$
w^{2}(q)=u-2 \sqrt{g h}
$$

has the constant value $w^{2}(q) \equiv w^{2}\left(q_{*}\right)=u_{*}-2 \sqrt{g h_{*}}$ at every point on any integral curve of $r^{2}(q)$.

Notes:

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.7]

Notes:

R.J. LeVeque, University of Washington

Notes:

Rarefaction waves

Centered rarefaction wave:

Similarity solution with piecewise constant initial data:

$$
q(x, t)= \begin{cases}q_{l} & \text { if } x / t \leq \xi_{1} \\ \tilde{q}(x / t) & \text { if } \xi_{1} \leq x / t \leq \xi_{2} \\ q_{r} & \text { if } x / t \geq \xi_{2},\end{cases}
$$

where q_{l} and q_{r} are two points on a single integral curve with $\lambda^{p}\left(q_{l}\right)<\lambda^{p}\left(q_{r}\right)$.

Required so that characteristics spread out as time advances.
Also want $\lambda^{p}(q)$ monotonically increasing from q_{l} to q_{r}.
This genuine nonlinearity generalizes convexity of scalar flux.
R.J. LeVeque, University of Washington

AMath 574, February 25, 2011 [FVMHP Sec. 13.8.5]
R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Sec. 13.8.5]

Notes:

For scalar problem $q_{t}+f(q)_{x}=0$, want $f^{\prime \prime}(q) \neq 0$ everywhere.
This implies that $f^{\prime}(q)$ is monotonically increasing or decreasing between q_{l} and q_{r}.

Shock if decreasing, Rarefaction if increasing.

For system we want $\lambda^{p}(q)$ to be monotonically varying along integral curve of $r^{p}(q)$.

If so then this field is genuinely nonlinear.
This requires $\nabla \lambda^{p}(q) \cdot r^{p}(q) \neq 0$.

Notes:

Genuine nonlinearity of shallow water equations

Integral curves (heavy line) and contours of λ^{1} :

R.J. LeVeque, University of Washington

Linearly degenerate fields

Scalar advection: $q_{t}+u q_{x}=0$ with $u=$ constant.
Characteristics $X(t)=x_{0}+u t$ are parallel.
Discontinuity propagates along a characteristic curve.
Characteristics on either side are parallel so not a shock!

For system the analogous property arises if

$$
\nabla \lambda^{p}(q) \cdot r^{p}(q) \equiv 0
$$

holds for all q, in which case
λ^{p} is constant along each integral curve.
Then p th field is said to be linearly degenerate.
R.J. LeVeque, University of Washington

AMath 574, February 25, 2011 [FVMHP Sec. 13.8.4]

The Riemann problem

Dam break problem for shallow water equations

$$
\begin{aligned}
h_{t}+(h u)_{x} & =0 \\
(h u)_{t}+\left(h u^{2}+\frac{1}{2} g h^{2}\right)_{x} & =0
\end{aligned}
$$

R.J. LeVeque, University of Washington AMath 574, February 25, 2011 [FVMHP Fig. 13.13]

Notes:

Notes:

Shallow water with passive tracer

Let $\phi(x, t)$ be tracer concentration and add equation

$$
\phi_{t}+u \phi_{x}=0 \Longrightarrow(h \phi)_{t}+(u h \phi)_{x}=0
$$

Gives:
$q=\left[\begin{array}{c}h \\ h u \\ h \phi\end{array}\right]=\left[\begin{array}{c}q^{1} \\ q^{2} \\ q^{3}\end{array}\right], \quad f(q)=\left[\begin{array}{c}h u \\ h u^{2}+\frac{1}{2} g h^{2} \\ u h \phi\end{array}\right]=\left[\begin{array}{c}q^{2} \\ \left(q^{2}\right) / q^{1}+\frac{1}{2} g\left(q^{1}\right)^{2} \\ q^{2} q^{3} / q^{1}\end{array}\right]$.
Jacobian:

$$
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u \phi & \phi & u
\end{array}\right] .
$$

R.J. LeVeque, University of Washington

Shallow water with passive tracer

$$
f^{\prime}(q)=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-u^{2}+g h & 2 u & 0 \\
-u \phi & \phi & u
\end{array}\right] .
$$

$$
\lambda^{1}=u-\sqrt{g h}, \quad \lambda^{2}=u, \quad \lambda^{3}=u+\sqrt{g h},
$$

$$
r^{1}=\left[\begin{array}{c}
1 \\
u-\sqrt{g h} \\
\phi
\end{array}\right], \quad r^{2}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], \quad r^{3}=\left[\begin{array}{c}
1 \\
u+\sqrt{g h} \\
\phi
\end{array}\right] .
$$

$$
\lambda^{2}=u=(h u) / h \Longrightarrow \nabla \lambda^{2}=\left[\begin{array}{c}
-u / h \\
1 / h \\
0
\end{array}\right] \Longrightarrow \lambda^{2} \cdot r^{2} \equiv 0
$$

So 2nd field is linearly degenerate.
(Fields 1 and 3 are genuinely nonlinear.)

