
AMath 574 February 9, 2011

Today:
• Scalar nonlinear conservation laws
• Traffic flow
• Shocks and rarefaction waves
• Burgers’ equation

Friday:
• More about nonlinear scalar problems and finite volume

methods

Reading: Chapter 11, 12

R.J. LeVeque, University of Washington AMath 574, February 9, 2011



Shock formation

For nonlinear problems wave speed generally depends on q.

Waves can steepen up and form shocks
=⇒ even smooth data can lead to discontinuous solutions.

Note:
• System of two equations gives rise to 2 waves.
• Each wave behaves like solution of nonlinear scalar

equation.

Not quite... no linear superposition. Nonlinear interaction!
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Shocks in traffic flow
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Car following model

Xj(t) = location of jth car at time t on one-lane road.

dXj(t)
dt

= Vj(t).

Velocity Vj(t) of jth car varies with j and t.

Simple model: Driver adjusts speed (instantly) depending on
distance to car ahead.

Vj(t) = v
(
Xj+1(t)−Xj(t)

)
for some function v(s) that defines speed as a function of
separation s.

Simulations: http://www.traffic-simulation.de/
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Function v(s) (speed as function of separation)

v(s) =

{
umax

(
1− L

s

)
if s ≥ L,

0 if s ≤ L.

where:
L = car length
umax = maximum velocity

Local density: 0 < L/s ≤ 1 (s = L =⇒ bumper-to-bumper)
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Continuum model

Switch to density function:

Let q(x, t) = density of cars, normalized so:

Units for x: carlengths, so x = 10 is 10 carlengths from x = 0.

Units for q: cars per carlength, so 0 ≤ q ≤ 1.

Total number of cars in interval x1 ≤ x ≤ x2 at time t is∫ x2

x1

q(x, t) dx
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Flux function for traffic

q(x, t) = density, u(x, t) = velocity = U(q(x, t)).

flux: f(q) = uq Conservation law: qt + f(q)x = 0.

Constant velocity umax independent of density:

f(q) = umaxq =⇒ qt + umaxqx = 0 (advection)

Velocity varying with density:

V (s) = umax(1− L/s) =⇒ U(q) = umax(1− q),

f(q) = umaxq(1− q) (quadratic nonlinearity)
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Characteristics for a scalar problem

qt + f(q)x = 0 =⇒ qt + f ′(q)qx = 0 (if solution is smooth).

Characteristic curves satisfy X ′(t) = f ′(q(X(t), t)), X(0) = x0.

How does solution vary along this curve?

d

dt
q(X(t), t) = qx(X(t), t)X ′(t) + qt(X(t), t)

= qx(X(t), t)f(q(X(t), t)) + qt(X(t), t)
= 0

So solution is constant on characteristic
as long as solution stays smooth.

q(X(t), t) = constant =⇒ X ′(t) is constant on characteristic,
so characteristics are straight lines!
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Nonlinear Burgers’ equation

Conservation form: ut +
(

1
2u

2
)
x

= 0, f(u) = 1
2u

2.

Quasi-linear form: ut + uux = 0.

This looks like an advection equation with u advected with
speed u.

True solution: u is constant along characteristic with speed
f ′(u) = u until the wave “breaks” (shock forms).
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Burgers’ equation

The solution is constant on characteristics so each value
advects at constant speed equal to the value...
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Burgers’ equation

Equal-area rule:

The area “under” the curve is conserved with time,

We must insert a shock so the two areas cut off are equal.
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Vanishing Viscosity solution

Viscous Burgers’ equation: ut +
(

1
2u

2
)
x

= εuxx.

This parabolic equation has a smooth C∞ solution for all t > 0
for any initial data.

Limiting solution as ε→ 0 gives the shock-wave solution.

Why try to solve hyperbolic equation?

• Solving parabolic equation requires implicit method,

• Often correct value of physical “viscosity” is very small,
shock profile that cannot be resolved on the desired grid

=⇒ smoothness of exact solution doesn’t help!
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Discontinuous solutions

Vanishing Viscosity solution: The Riemann solution q(x, t) is
the limit as ε→ 0 of the solution qε(x, t) of the parabolic
advection-diffusion equation

qt + uqx = εqxx.

For any ε > 0 this has a classical smooth solution:
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Weak solutions to qt + f(q)x = 0

q(x, t) is a weak solution if it satisfies the integral form of the
conservation law over all rectangles in space-time,∫ x2

x1

q(x, t2) dx−
∫ x2

x1

q(x, t1) dx

=
∫ t2

t1

f(q(x1, t)) dt−
∫ t2

t1

f(q(x2, t)) dt

Obtained by integrating

d

dt

∫ x2

x1

q(x, t) dx = f(q(x1, t))− f(q(x2, t))

from tn to tn+1.
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Weak solutions to qt + f(q)x = 0

Alternatively, multiply PDE by smooth test function φ(x, t), with
compact support (φ(x, t) ≡ 0 for |x| and t sufficiently large),
and then integrate over rectangle,∫ ∞

0

∫ ∞
−∞

(
qt + f(q)x

)
φ(x, t) dx dt

Then we can integrate by parts to get∫ ∞
0

∫ ∞
−∞

(
qφt + f(q)φx

)
dx dt = −

∫ ∞
0

q(x, 0)φ(x, 0) dx.

q(x, t) is a weak solution if this holds for all such φ.
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Weak solutions to qt + f(q)x = 0

A function q(x, t) that is piecewise smooth with jump
discontinuities is a weak solution only if:

• The PDE is satisfied where q is smooth,

• The jump discontinuities all satisfy the
Rankine-Hugoniot conditions.

Note: The weak solution may not be unique!
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Shock speed with states ql and qr at instant t1
shock with speed s

x1 x1 + ∆x

t1

t1 + ∆t

q = ql

q = qr

Then Z x1+∆x

x1

q(x, t1 + ∆t) dx−
Z x1+∆x

x1

q(x, t1) dx

=

Z t1+∆t

t1

f(q(x1, t)) dt−
Z t1+∆t

t1

f(q(x1 + ∆x, t)) dt.

Since q is essentially constant along each edge, this becomes

∆x ql −∆x qr = ∆tf(ql)−∆tf(qr) +O(∆t2),

Taking the limit as ∆t→ 0 gives

s(qr − ql) = f(qr)− f(ql).
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Rankine-Hugoniot jump condition

s(qr − ql) = f(qr)− f(ql).

This must hold for any discontinuity propagating with speed s,
even for systems of conservation laws.

For scalar problem, any jump allowed with speed:

s =
f(qr)− f(ql)

qr − ql
.

For systems, qr − ql and f(qr)− f(ql) are vectors, s scalar,

R-H condition: f(qr)− f(ql) must be scalar multiple of qr − ql.

For linear system, f(q) = Aq, this says

A(qr − ql) = s(qr − ql),

Jump must be an eigenvector, speed s the eigenvalue.
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Figure 11.1 — Shock formation in traffic

Discrete cars: Continuum model: f ′(q) = umax(1− 2q)
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Figure 11.1 — Shock formation

(a) particle paths (car trajectories) u(x, t) = umax(1− q(x, t))
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Figure 11.1 — Shock formation

(b) characteristics: f ′(q) = umax(1− 2q)
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Figure 11.2 — Traffic jam shock wave

Cars approaching red light (q` < 1, qr = 1)

Shock speed:

s =
f(qr)− f(q`)

qr − q`
=
−2umaxq`

1− q`
< 0.
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Figure 11.3 — Rarefaction wave

Cars accelerating at green light (q` = 1, qr = 0)

Characteristic speed f ′(q) = umax(1− 2q)

varies from f ′(q`) = −umax to f ′(qr) = umax.
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