
AMath 483/583 — Lecture 8 — April 13, 2011

Today:
• Makefiles

Friday:
• Computer architecture
• Cache considerations
• Optimizing Fortran codes

Read: Class notes and references

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Single file program with 2 subroutines:

! $CLASSHG/codes/fortran/multifile1/fullcode.f90
program demo

print *, "In main program"
call sub1()
call sub2()

end program demo

subroutine sub1()
print *, "In sub1"

end subroutine sub1

subroutine sub2()
print *, "In sub2"

end subroutine sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Split into 3 files:

Main program...

! $CLASSHG/codes/fortran/multifile1/main.f90
program demo

print *, "In main program"
call sub1()
call sub2()

end program demo

and two separate files (for N = 1, 2):

! $CLASSHG/codes/fortran/multifile1/subN.f90
subroutine subN()

print *, "In subN"
end subroutine subN

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Compile all three and link together into single executable:

$ gfortran main.f90 sub1.f90 sub2.f90 \
-o fullcode.exe

Run the executable:

$./fullcode.exe
In main program
In sub1
In sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Can split into separate compile....

$ gfortran -c main.f90 sub1.f90 sub2.f90

$ ls *.o
main.o sub1.o sub2.o

... and link steps:

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
In sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Next lecture: Make this easier with Makefiles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Next lecture: Make this easier with Makefiles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Makefiles

A common way of automating software builds and other
complex tasks with dependencies.

A Makefile is itself a program in a special language.

$CLASSHG/codes/fortran/multifile1/Makefile

fullcode.exe: main.o sub1.o sub2.o
gfortran main.o sub1.o sub2.o -o fullcode.exe

main.o: main.f90
gfortran -c main.f90

sub1.o: sub1.f90
gfortran -c sub1.f90

sub2.o: sub2.f90
gfortran -c sub2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Makefiles

$ cd $CLASSHG/codes/fortran/multifile1
$ rm -f *.o *.exe # remove old versions

$ make fullcode.exe
gfortran -c main.f90
gfortran -c sub1.f90
gfortran -c sub2.f90
gfortran main.o sub1.o sub2.o -o fullcode.exe

Uses commands for making fullcode.exe.

Note: First had to make all the .o files.
Then executed the rule to make fullcode.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Structure of a Makefile

Typical element in the simple Makefile:

target: dependencies
<TAB> command(s) to make target

Important to use tab character, not spaces!!
Warning: Some editors replace tabs with spaces!

Typing “make target” means:
1 Make sure all the dependencies are up to date

(those that are also targets)
2 If target is older than any dependency,

recreate it using the specified commands.

These rules are applied recursively!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Structure of a Makefile

Typical element in the simple Makefile:

target: dependencies
<TAB> command(s) to make target

Important to use tab character, not spaces!!
Warning: Some editors replace tabs with spaces!

Typing “make target” means:
1 Make sure all the dependencies are up to date

(those that are also targets)
2 If target is older than any dependency,

recreate it using the specified commands.

These rules are applied recursively!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Make examples

$ rm -f *.o *.exe

$ make sub1.o
gfortran -c sub1.f90

$ make main.o
gfortran -c main.f90

$ make # first target in file if none specified
gfortran -c sub2.f90
gfortran main.o sub1.o sub2.o -o fullcode.exe

Note: Last make required compiling sub2.f90
but not sub1.f90 or main.f90.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Age of dependencies

The last modification time of the file is used.

$ ls -l sub1.*
-rw-r--r-- 1 rjl staff 111 Apr 27 16:05 sub1.f90
-rw-r--r-- 1 rjl staff 936 Apr 27 16:56 sub1.o

$ make sub1.o
make: ‘sub1.o’ is up to date.

$ touch sub1.f90; ls -l sub1.f90
-rw-r--r-- 1 rjl staff 111 Apr 27 17:10 sub1.f90

$ make
gfortran -c sub1.f90
gfortran main.o sub1.o sub2.o -o fullcode.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Implicit rules

General rule to make the .o file from .f90 file:

$CLASSHG/codes/fortran/multifile1/Makefile2

fullcode.exe: main.o sub1.o sub2.o
gfortran main.o sub1.o sub2.o -o fullcode.exe

%.o : %.f90
gfortran -c $<

Making fullcode.exe requires main.o sub1.o sub2.o
to be up to date.

Rather than a rule to make each one separately,
the implicit rule is used for all three.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Specifying a different makefile

To use a makefile with a different name than Makefile:

$ make sub1.o -f Makefile2
gfortran -c sub1.f90

The rules in Makefile2 will be used.

The directory $CLASSHG/codes/fortran/multifile1
contains several sample makefiles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

https://bitbucket.org/rjleveque/uwamath583s11/src/133f78546a7a/codes/fortran/multifile1/

Makefile variables or macros

$CLASSHG/codes/fortran/multifile1/Makefile3

OBJECTS = main.o sub1.o sub2.o

fullcode.exe: $(OBJECTS)
gfortran $(OBJECTS) -o fullcode.exe

%.o : %.f90
gfortran -c $<

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Makefile variables

$CLASSHG/codes/fortran/multifile1/Makefile4

FC = gfortran
FFLAGS = -O3
LFLAGS =
OBJECTS = main.o sub1.o sub2.o

fullcode.exe: $(OBJECTS)
$(FC) $(LFLAGS) $(OBJECTS) -o fullcode.exe

%.o : %.f90
$(FC) $(FFLAGS) -c $<

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Makefile variables

$ rm -f *.o *.exe
$ make -f Makefile4
gfortran -O3 -c main.f90
gfortran -O3 -c sub1.f90
gfortran -O3 -c sub2.f90
gfortran -O3 main.o sub1.o sub2.o -o fullcode.exe

Can specify variables on command line:

$ rm -f *.o *.exe
$ make FFLAGS=’-g’ -f Makefile4
gfortran -g -c main.f90
gfortran -g -c sub1.f90
gfortran -g -c sub2.f90
gfortran -g main.o sub1.o sub2.o -o fullcode.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Phony targets — don’t create files

$CLASSHG/codes/fortran/multifile1/Makefile5
OBJECTS = main.o sub1.o sub2.o
.PHONY: clean

fullcode.exe: $(OBJECTS)
gfortran $(OBJECTS) -o fullcode.exe

%.o : %.f90
gfortran -c $<

clean:
rm -f $(OBJECTS) fullcode.exe

Note: No dependencies, so always do commands

$ make clean -f Makefile5
rm -f main.o sub1.o sub2.o fullcode.exe

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Common Makefile error

Using spaces instead of tab...

If we did this in the clean commands, we’d get:

$ make clean -f Makefile5

Makefile5:14: *** missing separator. Stop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Fancier things are possible...

$CLASSHG/codes/fortran/multifile1/Makefile6

SOURCES = $(wildcard *.f90)
OBJECTS = $(subst .f90,.o,$(SOURCES))

.PHONY: test

test:
@echo "Sources are: " $(SOURCES)
@echo "Objects are: " $(OBJECTS)

This gives:

$ make test -f Makefile6
Sources are: fullcode.f90 main.f90 sub1.f90 sub2.f90
Objects are: fullcode.o main.o sub1.o sub2.o

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

make help

$CLASSHG/codes/fortran/multifile1/Makefile6

OBJECTS = main.o sub1.o sub2.o
.PHONY: clean help

... as in Makefile5

help:
@echo "Valid targets:"
@echo " fullcode.exe"
@echo " main.o"
@echo " sub1.o"
@echo " sub2.o"
@echo " clean: removes .o and .exe files"

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

Other makefile examples

The html version of the class notes are created by typing

make html

in the the directory $CLASSHG/sphinx/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

https://bitbucket.org/rjleveque/uwamath583s11/src/133f78546a7a/sphinx/

Other makefile examples

The html version of the class notes are created by typing

make html

in the the directory $CLASSHG/sphinx/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

https://bitbucket.org/rjleveque/uwamath583s11/src/133f78546a7a/sphinx/

Other makefile examples

The html version of the class notes are created by typing

make html

in the the directory $CLASSHG/sphinx/

See the Makefile in that directory.

Each .rst (ReStructured Text) file is turned into an html file
corresponding to one webpage.

Changing one .rst file and redoing make html only
“recompiles” this one file.

But try modifying the configuration file conf.py and all files will
be regenerated.

Note: This is not a great example because the dependency
checking is actually done by the program sphinx-build.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 8, April 13, 2011

https://bitbucket.org/rjleveque/uwamath583s11/src/133f78546a7a/sphinx/

	Lecture 8
	Fortran — multi-file
	Makefiles

