
AMath 483/583 — Lecture 7 — April 11, 2011

Today:
• Array storage in Fortran
• Passing arrays to subroutines
• Fortran modules
• Multi-file Fortran codes

Wednesday:
• Makefile

Read: Class notes and references
There are several new Fortran sections.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Array storage

Rank 1 arrays have a single index, for example:

real(kind=8) :: x(3)
real(kind=8), dimension(3) :: x

are equivalent ways to define x with elements
x(1), x(2), x(3).

You can also specify a different starting index:

real(kind=8) :: x(0:2), y(4:6), z(-2:0)

These are all arrays of length 3 and this would be a valid
assignment:

y(5) = z(-2)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Passing arrays to subroutines

Note: x is a scalar, dummy argument a is an array.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Passing arrays to subroutines

This produces:

x = 5.00000000000000
y = 5.00000000000000
i = 1075052544
j = 0

Nasty!!

• The storage location of x and the next 2 storage locations
were all set to the floating point value 5.0e0

• This messed up the values originally stored in y, i, j.
• Integers are stored differently than floats. Two integers

take up 8 bytes, the same as one float, so the assignment
a(3) = 5. overwrites both i and j.

• The first half of the float 5., when interpreted as an integer,
is huge.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Passing arrays to subroutines

Note: We now try to set 1000 elements in memory!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Passing arrays to subroutines

This compiles fine, but running it gives:

Segmentation fault

This means that the program tried to change a value of memory
it was not allowed to.

Only a small amount of memory is devoted to the variables
declared.

The memory we tried to access might be where the program
itself is stored, or something related to another program that’s
running.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Segmentation faults

Debugging seg faults can be difficult.

Tips:

Compile using -fbounds-check option.

This catches some cases when you try to access an array out
of bounds.

But not the case just shown! The variable was passed to a
subroutine that doesn’t know how long the array should be.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Segmentation faults

Compile using the -g flag and then try running under gdb

$ gfortran -g arraypassing2.f90
$ gdb ./a.out

(gdb) run
Starting program: .../a.out
Program received signal SIGSEGV, Segmentation fault.
0x080488ce in setvals (a=Cannot access memory at
address 0xbffff370) at arraypassing2.f90:27
27 a(i) = 5.

(gdb) where
#0 0x080488ce in setvals
#1 0x080486a8 in arraypassing2 () at arraypassing2.f90:14

This tells us that the error occured at line 27, and that the subroutine
was called at line 13.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Segmentation faults

You can also probe the value of variables.

To find out what value of i it died on:

(gdb) print i
$1 = 403

This tells us that the error occured when trying to set a(403).

Why not when i = 4?

Memory is organized into pages and integer multiples of pages
must be devoted to variables in the program.

Apparently a page contains 8 * 402 = 3216 bytes.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Fortran debuggers

gdb does not work very well!!

Unfortunately there’s no good open source debugger for
Fortran.

Commercial options include totalview.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Rank 2 arrays

An array of rank 2 has two indices, e.g.

real(kind=8) :: A(3,4)

Compiler must map the 12 array elements to memory locations.

Different languages use different conventions!

In Fortran, arrays are stored by column in memory,
so the 12 consecutive memory locations would correspond to:

A(1,1)
A(2,1)
A(3,1)
A(1,2)
A(2,2)
...
A(1,4)
A(2,4)
A(3,4)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Rank 2 arrays

Note: equivalence statement
=⇒ same memory locations for A and B.

Also note implied do loops and format statements.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Rank 2 arrays

Output:

Row 1 of A contains: 10.0 40.0 70.0 100.0
Row 1 is in locations 1 4 7 10
These elements of B contain: 10.0 40.0 70.0 100.0

Row 2 of A contains: 20.0 50.0 80.0 110.0
Row 2 is in locations 2 5 8 11
These elements of B contain: 20.0 50.0 80.0 110.0

Row 3 of A contains: 30.0 60.0 90.0 120.0
Row 3 is in locations 3 6 9 12
These elements of B contain: 30.0 60.0 90.0 120.0

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Single file program with 2 subroutines:

! $CLASSHG/codes/fortran/multifile1/fullcode.f90
program demo

print *, "In main program"
call sub1()
call sub2()

end program demo

subroutine sub1()
print *, "In sub1"

end subroutine sub1

subroutine sub2()
print *, "In sub2"

end subroutine sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Split into 3 files:

Main program...

! $CLASSHG/codes/fortran/multifile1/main.f90
program demo

print *, "In main program"
call sub1()
call sub2()

end program demo

and two separate files (for N = 1, 2):

! $CLASSHG/codes/fortran/multifile1/subN.f90
subroutine subN()

print *, "In subN"
end subroutine subN

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Compile all three and link together into single executable:

$ gfortran main.f90 sub1.f90 sub2.f90 \
-o fullcode.exe

Run the executable:

$./fullcode.exe
In main program
In sub1
In sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Can split into separate compile....

$ gfortran -c main.f90 sub1.f90 sub2.f90

$ ls *.o
main.o sub1.o sub2.o

... and link steps:

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
In sub2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Next lecture: Make this easier with Makefiles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Splitting Fortran codes into files

Advantage: If we modify sub2.f90 to print "Now in sub2" we
only need to recompile this piece:

$ gfortran -c sub2.f90

$ gfortran main.o sub1.o sub2.o -o fullcode.exe

$./fullcode.exe
In main program
In sub1
Now in sub2

When working on a big code (e.g. 100,000 lines split between
200 subroutines) this can make a big difference!

Next lecture: Make this easier with Makefiles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Fortran modules

General structure of a module:

module <MODULE-NAME>
! Declare variables

contains
! Define subroutines or functions

end module <MODULE-NAME>

A program or subroutine can use this module:

program <NAME>
use <MODULE-NAME>
! Declare variables
! Executable statements

end program <NAME>

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Fortran module example

! $CLASSHG/codes/fortran/multifile2/sub1m.f90
module sub1m
contains
subroutine sub1()

print *, "In sub1"
end subroutine sub1
end module sub1m

! $CLASSHG/codes/fortran/multifile2/main.f90
program demo

use sub1m
print *, "In main program"
call sub1()

end program demo

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Fortran modules

Some uses:

• Can define global variables in modules to be used in
several different routines.

In Fortran 77 this had to be done with common blocks —
much less elegant.

• Subroutine/function interface information is generated to
aid in checking that proper arguments are passed.

It’s often best to put all subroutines and functions in
modules for this reason.

• Can define new data types to be used in several routines.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Compiling Fortran modules

If sub1m.f90 is a module, then compiling it creates sub1m.o
and also sub1m.mod:

$ gfortran -c sub1m.f90

$ ls
main.f90 sub1m.f90 sub1m.mod sub1m.o

the module must be compiled before any subroutine or program
that uses it!

$ rm -f sub1m.mod
$ gfortran main.f90 sub1m.f90
main.f90:5.13:

use sub1m
1

Fatal Error: Can’t open module file ’sub1m.mod’
for reading at (1): No such file or directory

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Another module example

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

Another module example

Running this gives:

pi = 3.14159265358979
area for a circle of radius 2: 12.5663706143592

R.J. LeVeque, University of Washington AMath 483/583, Lecture 7, April 11, 2011

	Lecture 7
	Fortran arrays
	Fortran — multi-file
	Fortran modules

