AMath 483/583 — Lecture 5 — April 6, 2011

Today:
e Fortran dynamic memory allocation
Array operations

Computer storage
Binary representation
Floating point
Exceptions

Friday:
e Computer arithmetic
e Fortran subroutines and functions

Read: Class notes and references.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
¢ Allocate arrays large enough for any application,
e Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will

probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory allocation

real (kind=8) dimension(:), allocatable
real (kind=8) dimension(:,:), allocatable

allocate (x(10))
allocate (a(30,10))

! use arrays

deallocate (x)
deallocate (a)

X
a

Memory allocation

If you might run out of memory, better to do:

real (kind=8), dimension(:,:), allocatable
allocate (a(30000,10000), stat=alloc_error)

if (alloc_error /= 0) then
print %, "Insufficient memory"
stop
endif

a

Array operations in Fortran

Fortran 90 supports some operations on arrays...

! SCLASSHG/codes/fortran/vectorops.f90
program vectorops

implicit none

real (kind=8), dimension(3) :: x, y

x = (/10.,20.,30./) | initialize
y = (/100.,400.,900./)

print %, "x ="
print *, x

print %, "xx%x2 + y ="

print *, x**x2 + vy ! componentwise

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran
! SCLASSHG/codes/fortran/vectorops.f90
! continued...

print *, "xxy ="

print *, xxy = (x(D)y (1), x(2)y(2),

print x, "sqrt(y) ="

print %, sqrt(y) ! componentwise

print %, "dot_product(x,y) =

print %, dot_product (x,V) ! scalar product

end program vectorops

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! SCLASSHG/codes/fortran/arrayops.f90
program arrayops

implicit none

real (kind=8), dimension(3,2) :: a

! create a as 3x2 array:
A = reshape((/1,2,3,4,5,6/), (/3,2/))

Note:
e Fortran is case insensitive: A = a
¢ Reshape fills array by columns, so

1 4
A=12 5
3 6

PRV I T T TR R 7'V 7R T ARA~dl AOA/EON | b o E Al A AA4 4

Array operations in Fortran — Matrices

! SCLASSHG/codes/fortran/arrayops.f90 (continued)

real (kind=8), dimension(3,2) :: a
real (kind=8), dimension(2,3) :: Db
real (kind=8), dimension(3,3) :: c
integer i

print %, "a ="

do i=1,3
print *, a(i,:) ' 17th row
enddo
b = transpose(a) ! 2x3 array
c = matmul (a, b) ! 3x3 matrix product

P S T T T TRV S 7 ¥ JRU AT I ARA~tl AOA/EOD | ot o B Al A N4 4

Array operations in Fortran — Matrices

! SCLASSHG/codes/fortran/arrayops.f90 (continued)

real (kind=8), dimension(3,2) :: a

real (kind=8), dimension(2) :: x

real (kind=8), dimension(3) :: vy

x = (/5,6/)

y = matmul (a, x) ! matrix-vector product
print %, "x = ",x

print %, "y =",y

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Linear systems in Fortran

There is no equivalent of the Matlab backslash operator for
solving a linear system Az =b (b = A\b)

Must call a library subroutine to solve a system.

Later we will see how to use LAPACK for this.

Note: Under the hood, Matlab calls LAPACK too!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Computer memory

Memory is subdivided into bytes, consisting of 8 bits each.

One byte can hold 2® = 256 distinct numbers:

00000000 =0
00000001 =1
00000010 = 2
11111111 = 255

Might represent integers, characters, colors, etc.

Usually programs involve integers and real numbers that
require more than 1 byte to store.

Often 4 bytes (32 bits) or 8 bytes (64 bits) used for each.

PRV I T T TR R 7'V 7R T ARA~il AOP/EON | ot o = Amtl & AAA4 4

Integers

To store integers, need one bit for the sign (4 or —)
In one byte this would leave 7 bits for binary digits.

Two-complements representation used:

10000000 = -128
10000001 = -127
10000010 = -126
11111110 = -2
11111111 = -1
00000000 =0
00000001 =1
00000010 = 2
01111111 = 127

Advantage: Binary addition works directly.

P S T T T TRV S 7 ¥ JRU AT I ARA~tl AOA/EOD | ot o B Al A N4 4

Integers

Integers are typically stored in 4 bytes (32 bits). Values
between roughly —23! and 23! can be stored.

In Python, larger integers can be stored and will automatically
be stored using more bytes.

Note: special software for arithmetic, may be slower!

>>> 2xx30
1073741824

>>> 2%%x100
1267650600228229401496703205376L

Note L on end!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Integer overflow in gfortran

! SCLASSHG/codes/fortran/integers.f90
program integers
implicit none

integer :: i,

i = 2%%30

print %, "i = ",i
J =4 % i

print *, "j — ",j

end program integers

produces the following:

i 1073741824
J = 0 This is wrong!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

32-bit vs. 64-bit architecture

Each byte in memory has an address, which is an integer.
On 32-bit machines, registers can only store

232 — 4294967296 ~ 4 billion

distinct addresses =— at most 4GB of memory can be
addressed.

Newer machines often have more, leading to the need for 64-bit
architectures (8 bytes for addresses).

Note: Integers might still be stored in 4 bytes, for example.

Fixed point notation

Use, e.g. 64 bits for a real number but always assume N bits in
integer part and M bits in fractional part.

Analog in decimal arithmetic, e.qg.:
5 digits for integer part and
6 digits in fractional part

Could represent, e.g.:

00003.141592
00000.000314
31415.926535

Disadvantages:
¢ Precision depends on size of number
¢ Often many wasted bits (leading 0’s)

¢ Limited range; often scientific problems involve very large
or small numbers.

Floating point real numbers

Base 10 scientific notation:
0.2345e-18 = 0.2345 x 10~'% = 0.0000000000000000002345

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:
Example: Mantissa: 0.101101, Exponent: -11011 means:

0.101101 = 1271+ 0(272) + 1(27*) + 1(27) +0(27°) + 1(279)
= 0.703125 (base 10)
—11011 = —1(2%) + 1(2*) + 0(2%) + 1(2") + 1(2°) = —27 (base 10)

So the number is

0.703125 x 2727 ~ 5.2386894822120667 x 10~

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Fortran:

real (kind=4): 4 bytes
This used to be standard single precision real

real (kind=8): 8 bytes
This used to be called double precision real

Python float datatype is 8 bytes.

8 bytes = 64 bits,
53 bits for mantissa and 11 bits for exponent (64 bits = 8 bytes).
We can store 52 binary bits of precision.

27%2 2.2 x 10716 = roughly 15 digits of precision.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Since 2792 ~ 2.2 x 10716 this corresponds to roughly 15 digits
of precision.

For example:

>>> from numpy import pi
>>> pi
3.1415926535897931

>>> 1000 x pi
3141.5926535897929

Note: storage and arithmetic is done in base 2
Converted to base 10 only when printed!

PRV I T T TR R 7'V 7R T ARA~il AOP/EON | ot o = Amtl & AAA4 4

Overflow

8 bytes floats: 64 bits for each real number with
53 bits for mantissa and
11 bits for exponent.

Exponents range between —1022 and 1023, so magnitude of
real number must be less than N, ~ 21923 ~ 1.8 x 10308,

If an operation gives a number outside this range we get an
overflow exception.

Or perhaps a special value representing “infinity”.

P S T T T TRV S 7 ¥ JRU AT I ARA~tl AOA/EOD | ot o B Al A N4 4

Real overflow

! SCLASSHG/codes/fortran/reals.f90

program reals
implicit none
real (kind=8) :: x,vy,z
x = 1.d308
print %, "x = ",x
y = 10.d0 » x
print %, "y =",y
z =y / 10.d0
print %, "z = ",z
end program reals

X = 1.000000000000000E+308
y = +Infinity
z = +Infinity

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Underflow

Exponents range between —1022 and 1023.

Smallest nonzero real number is about

Npnin = 271022 2.2 x 10739 if we insist it be normalized (i.e
no leading zeros).

Can represent even smaller numbers by using gradual
underflow, and subnormal numbers e.g.,

0.000005 x 107398 = 5.0 x 10731

With 16 digits, can go down to about 107324 in this manner.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Real underflow

SCLASSHG/codes/fortran/underflow.f90

program underflow
implicit none
real (kind=8) :: x

x = 1.d-308
print %, "x = ",x

do while (x > 0.d0)
x =x / 10.d0
print *, "x =
enddo
end program underflow

n
s X

PRV I T T TR R 7'V 7R T ARA~dl AOA/EON | b o At

Gradual underflow — less precision for smaller z

.999999999999999E-309
.000000000000002E-309
.999999999999969E-311
.999999999999475E-312
.999999999984653E-313
.000000000013287E-313
.999999999638807E-315
.999999984816838E-316
.999999836597144E-317
.999997366268915E-318
.999987484955998E-319
.999888671826830E-320
.999888671826830E-321
.980126045993180E-322
.881312916824931E-323
.881312916824931E-324
= 0.00000000000000

XXX X X XM X X X X X X XM X X X X
Il
O W W W WWWWVWWWEE WOWWREFE OO

P S T T T TRV S 7 ¥ JRU AT I ARA~tl AOA/EOD | ot o B Al A N4 4

Not-a-Number (NaN) Not-a-Number (NaN)

! SCLASSHG/codes/fortran/nan.f90
program nan

Some arithmetic operations give undefined results. implicit none

real (kind=8) :: x,y,z
The result of such an operation is often replaced by a special
value representing NaN. x = 0.d0
y = 1.d0 / x
Examples: print x, "y =", vy prints y = +Infinity
0/0 = NaN
/ z = 0.d0 / x
0x«Infinity= NaN print x, "z =", z prints z = NaN
z = 0.d0 * vy
print %, "z =", z prints z = NaN
end program nan
R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Trapping floating point exceptions
Often we want the program to crash instead of continuing with
Infinity or NaNs.

Can compile with fpe-trap flag set to the list of exceptions to
trap: overflow, underflow, or divide by zero:

$ gfortran —-ffpe-trap=zero,overflow,underflow \
nan.f90

S ./a.out

Floating point exception

Note: Not at all informative about where it crashed.
(Need to use a debugger to figure out where.)

PRV I T T TR R 7'V 7R T ARA~il AOP/EON | ot o = Amtl & AAA4 4

