
AMath 483/583 — Lecture 5 — April 6, 2011

Today:
• Fortran dynamic memory allocation
• Array operations

• Computer storage
• Binary representation
• Floating point
• Exceptions

Friday:
• Computer arithmetic
• Fortran subroutines and functions

Read: Class notes and references.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory allocation

real(kind=8) dimension(:), allocatable :: x
real(kind=8) dimension(:,:), allocatable :: a

allocate(x(10))
allocate(a(30,10))

! use arrays

deallocate(x)
deallocate(a)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Memory allocation

If you might run out of memory, better to do:

real(kind=8), dimension(:,:), allocatable :: a

allocate(a(30000,10000), stat=alloc_error)

if (alloc_error /= 0) then
print *, "Insufficient memory"
stop
endif

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran

Fortran 90 supports some operations on arrays...

! $CLASSHG/codes/fortran/vectorops.f90
program vectorops

implicit none
real(kind=8), dimension(3) :: x, y

x = (/10.,20.,30./) ! initialize
y = (/100.,400.,900./)

print *, "x = "
print *, x

print *, "x**2 + y = "
print *, x**2 + y ! componentwise

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran

! $CLASSHG/codes/fortran/vectorops.f90
! continued...

print *, "x*y = "
print *, x*y ! = (x(1)y(1), x(2)y(2), ...)

print *, "sqrt(y) = "
print *, sqrt(y) ! componentwise

print *, "dot_product(x,y) = "
print *, dot_product(x,y) ! scalar product

end program vectorops

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90
program arrayops

implicit none
real(kind=8), dimension(3,2) :: a
...
! create a as 3x2 array:
A = reshape((/1,2,3,4,5,6/), (/3,2/))

Note:
• Fortran is case insensitive: A = a

• Reshape fills array by columns, so

A =

 1 4
2 5
3 6

 .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2,3) :: b
real(kind=8), dimension(3,3) :: c
integer :: i

print *, "a = "
do i=1,3

print *, a(i,:) ! i’th row
enddo

b = transpose(a) ! 2x3 array

c = matmul(a,b) ! 3x3 matrix product

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Array operations in Fortran — Matrices

! $CLASSHG/codes/fortran/arrayops.f90 (continued)
real(kind=8), dimension(3,2) :: a
real(kind=8), dimension(2) :: x
real(kind=8), dimension(3) :: y

x = (/5,6/)
y = matmul(a,x) ! matrix-vector product
print *, "x = ",x
print *, "y = ",y

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Linear systems in Fortran

There is no equivalent of the Matlab backslash operator for
solving a linear system Ax = b (b = A\b)

Must call a library subroutine to solve a system.

Later we will see how to use LAPACK for this.

Note: Under the hood, Matlab calls LAPACK too!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Computer memory

Memory is subdivided into bytes, consisting of 8 bits each.

One byte can hold 28 = 256 distinct numbers:

00000000 = 0
00000001 = 1
00000010 = 2
...
11111111 = 255

Might represent integers, characters, colors, etc.

Usually programs involve integers and real numbers that
require more than 1 byte to store.

Often 4 bytes (32 bits) or 8 bytes (64 bits) used for each.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Integers

To store integers, need one bit for the sign (+ or −)
In one byte this would leave 7 bits for binary digits.

Two-complements representation used:

10000000 = -128
10000001 = -127
10000010 = -126
...
11111110 = -2
11111111 = -1
00000000 = 0
00000001 = 1
00000010 = 2
...
01111111 = 127

Advantage: Binary addition works directly.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Integers

Integers are typically stored in 4 bytes (32 bits). Values
between roughly −231 and 231 can be stored.

In Python, larger integers can be stored and will automatically
be stored using more bytes.

Note: special software for arithmetic, may be slower!

>>> 2**30
1073741824

>>> 2**100
1267650600228229401496703205376L

Note L on end!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Integer overflow in gfortran

! $CLASSHG/codes/fortran/integers.f90
program integers

implicit none
integer :: i,j

i = 2**30
print *, "i = ",i

j = 4 * i
print *, "j = ",j

end program integers

produces the following:

i = 1073741824
j = 0 This is wrong!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

32-bit vs. 64-bit architecture

Each byte in memory has an address, which is an integer.
On 32-bit machines, registers can only store

232 = 4294967296 ≈ 4 billion

distinct addresses =⇒ at most 4GB of memory can be
addressed.

Newer machines often have more, leading to the need for 64-bit
architectures (8 bytes for addresses).

Note: Integers might still be stored in 4 bytes, for example.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Fixed point notation

Use, e.g. 64 bits for a real number but always assume N bits in
integer part and M bits in fractional part.

Analog in decimal arithmetic, e.g.:
5 digits for integer part and
6 digits in fractional part

Could represent, e.g.:

00003.141592
00000.000314
31415.926535

Disadvantages:
• Precision depends on size of number
• Often many wasted bits (leading 0’s)
• Limited range; often scientific problems involve very large

or small numbers.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Base 10 scientific notation:

0.2345e-18 = 0.2345× 10−18 = 0.0000000000000000002345

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

0.101101 = 1(2−1) + 0(2−2) + 1(2−3) + 1(2−4) + 0(2−5) + 1(2−6)
= 0.703125 (base 10)

−11011 = −1(24) + 1(23) + 0(22) + 1(21) + 1(20) = −27 (base 10)

So the number is

0.703125× 2−27 ≈ 5.2386894822120667× 10−9

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Base 10 scientific notation:

0.2345e-18 = 0.2345× 10−18 = 0.0000000000000000002345

Mantissa: 0.2345, Exponent: -18

Binary floating point numbers:

Example: Mantissa: 0.101101, Exponent: -11011 means:

0.101101 = 1(2−1) + 0(2−2) + 1(2−3) + 1(2−4) + 0(2−5) + 1(2−6)
= 0.703125 (base 10)

−11011 = −1(24) + 1(23) + 0(22) + 1(21) + 1(20) = −27 (base 10)

So the number is

0.703125× 2−27 ≈ 5.2386894822120667× 10−9

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Fortran:

real (kind=4): 4 bytes
This used to be standard single precision real

real (kind=8): 8 bytes
This used to be called double precision real

Python float datatype is 8 bytes.

8 bytes = 64 bits,

53 bits for mantissa and 11 bits for exponent (64 bits = 8 bytes).

We can store 52 binary bits of precision.

2−52 ≈ 2.2× 10−16 =⇒ roughly 15 digits of precision.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Floating point real numbers

Since 2−52 ≈ 2.2× 10−16 this corresponds to roughly 15 digits
of precision.

For example:

>>> from numpy import pi
>>> pi
3.1415926535897931

>>> 1000 * pi
3141.5926535897929

Note: storage and arithmetic is done in base 2
Converted to base 10 only when printed!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Overflow

8 bytes floats: 64 bits for each real number with
53 bits for mantissa and
11 bits for exponent.

Exponents range between −1022 and 1023, so magnitude of
real number must be less than Nmax ≈ 21023 ≈ 1.8× 10308.

If an operation gives a number outside this range we get an
overflow exception.

Or perhaps a special value representing “infinity”.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Real overflow

! $CLASSHG/codes/fortran/reals.f90

program reals
implicit none
real (kind=8) :: x,y,z
x = 1.d308
print *, "x = ",x
y = 10.d0 * x
print *, "y = ",y
z = y / 10.d0
print *, "z = ",z

end program reals

x = 1.000000000000000E+308
y = +Infinity
z = +Infinity

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Underflow

Exponents range between −1022 and 1023.
Smallest nonzero real number is about
Nmin = 2−1022 ≈ 2.2× 10−308 if we insist it be normalized (i.e
no leading zeros).

Can represent even smaller numbers by using gradual
underflow, and subnormal numbers e.g.,

0.000005× 10−308 = 5.0× 10−314

With 16 digits, can go down to about 10−324 in this manner.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Real underflow

$CLASSHG/codes/fortran/underflow.f90

program underflow
implicit none
real (kind=8) :: x

x = 1.d-308
print *, "x = ",x

do while (x > 0.d0)
x = x / 10.d0
print *, "x = ",x
enddo

end program underflow

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Gradual underflow =⇒ less precision for smaller x

x = 9.999999999999999E-309
x = 1.000000000000002E-309
x = 9.999999999999969E-311
x = 9.999999999999475E-312
x = 9.999999999984653E-313
x = 1.000000000013287E-313
x = 9.999999999638807E-315
x = 9.999999984816838E-316
x = 9.999999836597144E-317
x = 9.999997366268915E-318
x = 9.999987484955998E-319
x = 9.999888671826830E-320
x = 9.999888671826830E-321
x = 9.980126045993180E-322
x = 9.881312916824931E-323
x = 9.881312916824931E-324
x = 0.00000000000000

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Not-a-Number (NaN)

Some arithmetic operations give undefined results.

The result of such an operation is often replaced by a special
value representing NaN.

Examples:

0/0 = NaN

0∗Infinity= NaN

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Not-a-Number (NaN)

! $CLASSHG/codes/fortran/nan.f90
program nan

implicit none
real (kind=8) :: x,y,z

x = 0.d0
y = 1.d0 / x
print *, "y = ", y prints y = +Infinity

z = 0.d0 / x
print *, "z = ", z prints z = NaN

z = 0.d0 * y
print *, "z = ", z prints z = NaN

end program nan

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

Trapping floating point exceptions

Often we want the program to crash instead of continuing with
Infinity or NaNs.

Can compile with fpe-trap flag set to the list of exceptions to
trap: overflow, underflow, or divide by zero:

$ gfortran -ffpe-trap=zero,overflow,underflow \
nan.f90

$./a.out
Floating point exception

Note: Not at all informative about where it crashed.
(Need to use a debugger to figure out where.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 5, April 6, 2011

	Lecture 5
	Dynamic memory allocation
	Array operations
	Binary and memory
	Floating point arithmetic

