
AMath 483/583 — Lecture 4 — April 4, 2011

Today:
• Interpreted vs. compiled languages

• Fortran

Wednesday:
• More Fortran

• Computer storage of numbers

Read: Class notes and references.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiled vs. interpreted language

Not so much a feature of language syntax as of how language
is converted into machine instructions.

Many languages use elements of both.

Interpreter:
• Takes commands one at a time, converts into machine

code, and executes.
• Allows interactive programming at a shell prompt, as in

Python or Matlab.
• Can’t take advantage of optimizing over a entire program

— does not know what instructions are coming next.
• Must translate each command while running the code,

possibly many times over in a loop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
coverts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
coverts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
coverts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiled language

The program must be written in 1 or more files (source code).

These files are input data for the compiler, which is a computer
program that analyzes the source code and converts it into
object code.

The object code is then passed to a linker or loader that turns
one or more objects into an executable.

Why two steps?

Object code contains symbols such as variables that may be
defined in other objects. Linker resolves the symbols and
coverts them into addresses in memory.

Often large programs consist of many separate files and/or
library routines — don’t want to re-compile them all when only
one is changed. (Later we’ll use Makefiles.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Simple Fortran program

! $CLASSHG/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

Notes:
• Indentation optional (but make it readable!)
• First declaration of variables then executable statements
• implicit none means all variables must be declared

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Simple Fortran program

! $CLASSHG/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

More notes:
• (kind = 8) means 8-bytes used for storage,
• 3.d0 means 3× 100 in double precision (8 bytes)
• 2.d-1 means 2× 10−1 = 0.2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Simple Fortran program

! $CLASSHG/codes/fortran/example1.f90
program example1

implicit none
real (kind=8) :: x,y,z

x = 3.d0
y = 1.d-1
z = x + y
print *, "z = ", z

end program example1

More notes:
• print *, ...: The * means no special format specified

As a result all available digits of z will be printed.
• Later will see how to specify print format.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiling and running Fortran

Suppose example1.f90 contains this program.

Then:

$ gfortran example1.f90

compiles and links and creates an executable named a.out

To run the code after compiling it:

$./a.out
z = 3.20000000000000

The command ./a.out executes this file (in the current
directory).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compiling and running Fortran

Can give executable a different name with -o flag:

$ gfortran example1.f90 -o example1.exe
$./example1.exe

z = 3.20000000000000

Can separate compile and link steps:

$ gfortran -c example1.f90 # creates example1.o

$ gfortran example1.o -o example1.exe
$./example1.exe
z = 3.20000000000000

This creates and then uses the object code example1.o.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Compile-time errors

Introduce an error in the code: (zz instead of z)

program example1
implicit none
real (kind=8) :: x,y,z
x = 3.d0
y = 2.d-1
zz = x + y
print *, "z = ", z

end program example1

This gives an error when compiling:

$ gfortran example1.f90
example1.f90:11.6:
zz = x + y
1

Error: Symbol ’zz’ at (1) has no IMPLICIT type

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Without the “implicit none”

Introduce an error in the code: (zz instead of z)

program example1
real (kind=8) :: x,y,z
x = 3.d0
y = 2.d-1
zz = x + y
print *, "z = ", z

end program example1

This compiles fine and gives the result:

$ gfortran example1.f90
$./a.out

z = -3.626667641771191E-038

Or some other random nonsense since z was never set.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran types

Variables refer to particular storage location(s), must declare
variable to be of a particular type and this won’t change.

The statement

implicit none

means all variables must be explicitly declared.

Otherwise you can use a variable without prior declaration and
the type will depend on what letter the name starts with.
Default:
• integer if starts with i, j, k, l, m, n
• real (kind=4) otherwise (single precision)

Many older Fortran codes use this convention!

Much safer to use implicit none for clarity,
and to help avoid typos.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran arrays and loops

! $CLASSHG/codes/fortran/loop1.f90
program loop1

implicit none
integer, parameter :: n = 10000
real (kind=8), dimension(n) :: x, y
integer :: i

do i=1,n
x(i) = 3.d0 * i
enddo

do i=1,n
y(i) = 2.d0 * x(i)
enddo

print *, "Last y computed: ", y(n)
end program loop1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran arrays and loops

program loop1
implicit none
integer, parameter :: n = 10000
real (kind=8), dimension(n) :: x, y
integer :: i

Comments:
• integer, parameter means this value will not be

changed.
• dimension(n) :: x, y means these are arrays of

length n.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran arrays and loops

do i=1,n
x(i) = 3.d0 * i
enddo

Comments:
• x(i) means i’th element of array.
• Instead of enddo, can also use labels...

do 100 i=1,n
x(i) = 3.d0 * i

100 continue

The number 100 is arbitrary. Useful for long loops.
Often seen in older codes.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran if-then-else

! $CLASSHG/codes/fortran/ifelse1.f90

program ifelse1
implicit none
real(kind=8) :: x
integer :: i

i = 3

if (i<=2) then
print *, "i is less or equal to 2"

else if (i/=5) then
print *, "i is greater than 2, not equal to 5"

else
print *, "i is equal to 5"

endif
end program ifelse1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran if-then-else

Booleans: .true. .false.

Comparisons:
< or .lt. <= or .le.

> or .gt. >= or .ge.

== or .eq. /= or .ne.

Examples:

(i >= 5) .and. (i < 12)

((i .lt. 5) .or. (i .ge. 12)) .and. &
(i .ne. 20)

Note: & is the Fortran continuation character.
Statement continues on next line.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran if-then-else

! $CLASSHG/codes/fortran/boolean1.f90
program boolean1

implicit none
integer :: i,k
logical :: ever_zero

ever_zero = .false.
do i=1,10

k = 3*i - 1
ever_zero = (ever_zero .or. (k == 0))
enddo

if (ever_zero) then
print *, "3*i - 1 takes the value 0 for some i"

else
print *, "3*i - 1 is never 0 for i tested"

endif
end program boolean1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

Major changes again from Fortran 77 to Fortran 90.

Fortran 95: minor changes.

Fortran 2003: not fully implemented by most compilers.

We will use Fortran 90/95.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

Major changes again from Fortran 77 to Fortran 90.

Fortran 95: minor changes.

Fortran 2003: not fully implemented by most compilers.

We will use Fortran 90/95.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran history

Prior to Fortran, programs were often written in machine code
or assembly language.

FORTRAN = FORmula TRANslator

Fortran I: 1954–57, followed by Fortran II, III, IV, Fortran 66.

Major changes in Fortran 77, which is still widely used.

Major changes again from Fortran 77 to Fortran 90.

Fortran 95: minor changes.

Fortran 2003: not fully implemented by most compilers.

We will use Fortran 90/95.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran syntax

Big differences between Fortran 77 and Fortran 90/95.

Fortran 77 still widely used:
• Legacy codes (written long ago, millions of lines...)
• Faster for some things.

Note: In general adding more high-level programming features
to a language makes it harder for compiler to optimize into
fast-running code.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran syntax

One big difference: Fortran 77 (and prior versions) required
fixed format of lines:

Executable statements must start in column 7 or greater,

Only the first 72 columns are used, the rest ignored!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

Fortran syntax

Fortran 90: free format.

Indentation is optional (but highly recommended).

gfortran will compile Fortran 77 or 90/95.

Use file extension .f for Fortran 77.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 4, April 4, 2011

	Lecture 4
	Compilers, Interpreters, Fortran

