
AMath 483/583 — Lecture 28 — June 1, 2011

Today:
• Python plus Fortran
• Comments on quadtests.py for project
• Linear vs. log-log plots
• Visualization

Friday:
• Animation: plots to movies
• Binary I/O
• Parallel IPython
• Reproducible research
• Course evaluations (please come!)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Python scripting for Fortran codes

It’s often convenient to run tests and plot results using Python

Final project includes testquads.py

from pylab import *; import os

def run_tests(nlist=None):
function body

if __name__=="__main__":
dx,etrap,esimp = run_tests()
plot_errors(dx,etrap,esimp)

The last bit is executed only if the code is run via one of:

$ python testquads.py
>>> execfile(’testquads.py’)
In[1] run testquads.py

Not executed if it is imported as a module.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Python scripting for Fortran codes

def run_tests(nlist=None):

if nlist is None:
default: [10, 20, 40, ..., 10*2**14]:
nlist = [10*2**j for j in range(15)]

Create arrays to accumalate dx and errors
Initialize to all ones.
dx = ones(len(nlist))
error_trap = ones(len(nlist))
error_simpson = ones(len(nlist))

Uses list comprehension to define default nlist.

Arrays are initialized for accumulating results of tests.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Python scripting for Fortran codes

Run a set of tests and read in results:

for i in range(len(nlist)):
n = nlist[i]
infile = open(’input.txt’,’w’)
convert n to a string to write out,
followed by newline \n:
infile.write("%s \n" % n)
infile.close()

print "Running code with n = ",n
os.system(’make run’)

outdata = loadtxt(’output.txt’)
dx[i] = outdata[0]
error_trap[i] = abs(outdata[1])
error_simpson[i] = abs(outdata[2])

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Expected error

For smooth functions, the error in the Trapezoidal Rule will be
O(∆x2) as ∆x→ 0:

E(∆x) ≈ C2∆x2 + C3∆x3 + · · ·
for some constants C2, C3, etc. that depend on the integrand.

Note:
• This is only a statement about how error behaves

for ∆x sufficiently small.

• This is a statement about how errors behave
in exact arithmetic.

On the computer, rounding errors will eventually dominate.
Cannot expect error to go below rounding level.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Plotting errors vs. ∆x

Plotting the error on a linear scale is hard to interpret:

Behavior for small ∆x is impossible to see.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Expected error in log-log scale

Trapezoidal Rule: E(∆x) ≈ C2∆x2

Taking logarithms:

log(E) ≈ logC2 + log(∆x2)
= logC2 + 2 log(∆x)

So log(E) is a linear function of log(∆x) with slope 2.

Simpson’s Rule: E(∆x) ≈ C4∆x4

log(E) ≈ logC4 + log(∆x4)
= logC4 + 4 log(∆x)

So log(E) is a linear function of log(∆x) with slope 4.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Plotting errors vs. ∆x on log-log scale

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Computer graphics / animation

3D Graphics is big business (gaming, animation).

Has driven development of high performance computing.

Example: The movie Avatar

240,000 computer generated frames (24 frames per second)

12 MB per frame, 288 MB per second,
17.3 GB of data per minute of film.

Months of computing on 40,000 processors
with 104 Terabytes of RAM.

[reference]

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

GPUs — Graphical Processor Unit

Rendering graphics requires extensive processing.

For example, rotation of image requires:
multiplying large number of vectors by rotation matrix.
hidden line removal
lighting/shading

Recent graphics boards have up to 512 cores.

Initially very specialized, not suitable for general programming.

GPGPU: General purpose GPU programming:

• CUDA, PyCUDA (nVidia)
• OpenCL

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Graphics and Visualization

Many tools are available for plotting numerical results.

Some open source Python options:

• matplotlib for 1d plots and
2d plots (e.g. pseudocolor, contour, quiver)

• Mayavi for 3d plots (curves, surfaces, vector fields)

Mayavi is easiest to get going by installing the
Enthought Python Distribution (EPD),
which is available for many platforms.
(Also includes NumPy, SciPy, matplotlib.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Surface plot using Mayavi

Plot of temperature from Homework 6... see
$CLASSHG/codes/python/plotheat_mesh.py

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Graphics and Visualization

Open source packages developed by National Labs...

• VisIt

• ParaView

Harder to get going, but designed for large-scale 3d plots,
distributed data, adaptive mesh refinement results, etc.:

Each have stand-alone GUI and also Python scripting
capabilities.

Based on VTK (Visualization Tool Kit).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Graphics and Visualization

Note: Cannot plot directly from Fortran.

Python Options:

• Compute and plot in Python (may be too slow)

• Compute in Fortran, write to disk, read into Python

• Use f2py to call Fortran subroutines from Python

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Using matplotlib

$ ipython -pylab

starts ipython in manner that interactive plots work.
This also automatically does...

from pylab import *

which puts all NumPy and matplotlib plotting routines in
namespace, so e.g.:

In [1]: x = linspace(0, 1, 101)
In [2]: plot(x, x**2, ’r-o’)

To make it clear where things come from:

In [1]: import numpy as np
In [2]: from matplotlib import pyplot as plt
In [3]: x = np.linspace(0, 1, 101)
In [4]: plt.plot(x, x**2, ’r-o’)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Tips on plots for papers, publications

Make lines thick enough, symbols large enough

These often fade out when reduced or copied

plt.plot(x, y, ’o-’, linewidth=2, markersize=8)

Remember that doc strings can be see by plt.plot? in
IPython.

See also documentation and gallery.

Make fonts large enough to read axes, title, legends, etc.

plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.title("Plot of temperature", fontsize=15)
plt.xlabel("x", fontsize=15)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

1d plots of spiral...

matplotlib plot command connects points with line segments...

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

1d plots of spiral...

for N in [50, 500]:
theta = np.linspace(0., 10*np.pi, N)
x = theta * np.cos(theta)
y = theta * np.sin(theta)

x and y are NumPy arrays of length N
plt.plot(x, y, ’k’, linewidth=3)

plt.axis(’scaled’)
plt.xlim(-35,35); plt.ylim(-35,35)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)

plt.title(’N = %s’ % N, fontsize=20)
plt.savefig(’spiral%s.png’ % N)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

2d plots: defining grids in Python with meshgrid

m = 11; n = 6
x = np.linspace(0, 2, m)
y = np.linspace(0, 1, n)

x2,y2 = np.meshgrid(x,y)
These have shape (n,m) and !!!
(x2[i,j], y2[i,j]) is (x[j], y[i]) !!!

plt.plot(x2, y2, ’o’, markersize=10)
plots columns of x2 array vs. columns of y2
(different color for each column)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

2d plots: defining grids in Python

>>> x
array([1., 2., 3., 4., 5.]) # m=5

>>> y
array([10., 20., 30.]) # n=3

x2, y2 = np.meshgrid(x,y)

>>> x2
array([[1., 2., 3., 4., 5.],

[1., 2., 3., 4., 5.],
[1., 2., 3., 4., 5.]])

>>> y2
array([[10., 10., 10., 10., 10.],

[20., 20., 20., 20., 20.],
[30., 30., 30., 30., 30.]])

>>> (x[2], y[1])
(3.0, 20.0)

>>> (x2[1,2], y2[1,2])
(3.0, 20.0)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

2d contour plots

x2,y2 = np.meshgrid(x,y)

These have shape (n,m) = (6,11) !!!
(x2[i,j], y2[i,j]) is (x[j], y[i]) !!!

Function defined at grid points:
u = x2**2 + y2**2 # also has shape (6,11)!!!

levels = np.linspace(0,5,51)
plt.contour(x2, y2, u, levels, colors=’k’)

Note: Contour lines should be circular (but coarse grid!)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

2d pcolor (pseudocolor) plots

x2,y2 = np.meshgrid(x,y)

These have shape (n,m) = (6,11)

Function defined at grid points:
u = x2**2 + y2**2 # also has shape (6,11)

plt.pcolor(x2, y2, u)
plt.colorbar(orientation=’horizontal’)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

2d plots: using grids in Python
Note: x2, y2 values are corners of cells on m× n grid.

Colors are constant in (n− 1)× (m− 1) array of cells.
Last row and column of u are ignored.

For pcolor plots, better to define u at cell centers:
xmid = 0.5*(x[:-1] + x[1:]) # midpoints in x
ymid = 0.5*(y[:-1] + y[1:]) # midpoints in y
x2m,y2m = np.meshgrid(xmid,ymid) # shape (m-1,n-1)

Define a function of (x,y) at midpoints:
umid = x2m**2 + y2m**2
plt.pcolor(x2, y2, umid) # original (x2,y2)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Mapped grids — polar coordinates in annulus

Polar coordinate grid for r ≤ r ≤ 2, 0 ≤ θ ≤ 2π

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

Mapped grids — polar coordinates in annulus

m = 6; n = 41

r = np.linspace(1, 2, m)
theta = np.linspace(0, 2*np.pi, n)
R,Theta = np.meshgrid(r,theta)

X = R * np.cos(Theta)
Y = R * np.sin(Theta)

U = X**2 + Y**2
plt.pcolor(X, Y, U, edgecolors=’k’)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 28, June 1, 2011

