
AMath 483/583 — Lecture 24 — May 20, 2011

Today:
• The Graphical Processing Unit (GPU)
• GPU Programming

Today’s lecture developed and presented by Grady Lemoine

References:

Andreas Kloeckner’s High Performance Scientific Computing
course at NYU:
http://cs.nyu.edu/courses/fall10/G22.2945-001/
lectures.html

The Khronos Group’s OpenCL page:
http://www.khronos.org/opencl/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

What’s a GPU?

• GPU stands for Graphics
Processing Unit (a.k.a. graphics
card)

• Many models, not all suited to
scientific computing

• Performance improvements
driven by PC gaming market

• GPGPUs (General-Purpose
GPUs) developed only in the past
few years

• GPUs are not suited for every
task, but what they can do, they
do very well

• Sometimes 10x speedup over
CPU, sometimes more Photo credit: nVidia

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Some GPU application areas

GPUs are currently being used in:
• Fluid dynamics
• Atmospheric science
• Petroleum exploration
• Computational finance
• Medical imaging
• X-ray diffraction analysis
• Molecular dynamics
• ... and many other fields

NCAR WRF model, partially
GPU-accelerated

Credit: NCAR

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Where is a GPU?

• So far in this class we’ve just talked about CPU and RAM
• GPU is (usually) a separate entity
• Two broad types of GPU:

• Integrated: part of CPU or supporting chipset, uses same
RAM pool as CPU

• Discrete: separate chip or card, connected to chipset by I/O
bus, often has own RAM

• Integrated GPUs are generally less powerful
• GPUs for HPC are usually extremely powerful discrete

models

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

GPU pros and cons

• Why should I use a GPU?
• Very high aggregate computation rate
• Low power consumption relative to work done (good

performance-per-watt)
• High-end GPUs use more power than high-end CPUs, but

perform much more computation

• Why should I not use a GPU?
• Massively parallel hardware – no good for inherently serial

computations
• More complex to program

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Differences between CPUs and GPUs

CPUs:
• Make a few threads run

fast individually
• Have a few powerful cores
• Reduce the need for the

programmer to
micromanage

GPUs:
• Make many threads run

fast in aggregate
• Have many weak “cores”
• Give the programmer

greater control

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Differences between CPUs and GPUs

• How to evolve from a CPU to a GPU:
1 Remove CPU parts used to improve single-thread

performance (caches, instruction reordering, branch
predictor, etc.)

2 Add more cores in the space freed up
3 Assume many cores using same instruction stream, so

share instruction decoding across multiple ALUs
(Arithmetic-Logical Units)

• Results in Single Instruction, Multiple Data (SIMD) model – a
bit different from SPMD model of OpenMP and MPI

4 Add more cores in the space freed up
5 Reduce clock speed, to reduce power consumption and

allow even more cores

• May end up with dozens of instruction streams, each
acting on 8+ data items at once

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Branches with SIMD

• Problem: What happens when an instruction stream has a
conditional that goes different ways for different data?

• Each group of ALUs must all execute the same instructions,
but those instructions might be wrong for some ALUs

• Solution: Cores for which the condition is true and those
for which it’s false execute separately

• Warning: Can reduce performance – some ALUs idle while
waiting for the other part of the branch

Code ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6
if (x >= 0) then T T F T T T
x2 = x ⇓ ⇓ ⊗ ⇓ ⇓ ⇓
else
x2 = -x ⊗ ⊗ ⇓ ⊗ ⊗ ⊗
end if

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Memory latency (yet again)

• Problem: Memory still has a long latency, and we’ve just
removed the cache hardware that helped us fight that...

• Solution: Hide latency by queueing many more threads
than we can run

• When thread 1 stalls for a memory request, thread 2 can
execute while it waits

• When thread 2 stalls, thread 3 can execute while it waits
• When thread 3 stalls...
• Eventually thread 1’s request finishes, and it can run again

once the current thread stalls
• Requires extra context-switching hardware, but cheaper

than the cache it replaced

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

GPU memory hierarchy

• Discrete GPUs have their own on-board RAM
• Provides working space
• Saves using slow I/O bus to main memory

• They also have their own fast “working memory”
• Similar to cache on CPUs, but smaller
• Private to each group of ALUs

• Unlike with CPUs, program manages data transfer explicitly

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

© Copyright Khronos Group, 2011 - Page 7

OpenCL Memory Model

Memory management is Explicit
You must move data from host -> global -> local … and back

• Private Memory

–Per work-item

• Local Memory

–Shared within a workgroup

• Global/Constant Memory

–Visible to all workgroups

• Host Memory

–On the CPU

Workgroup

Work-Item

Compute Device

Work-Item

Workgroup

Host

Private
Memory

Private
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

Work-ItemWork-Item

Private
Memory

Private
Memory

(Credit: Khronos Group)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

How to program for a GPU

• GPU hardware is very different from CPU hardware
• GPU programming is pretty different too
• Current recommended language: OpenCL

• “Open Computing Language”
• Support from all major GPU and CPU manufacturers
• Coordinated by the Khronos Group (non-profit industry

consortium)
• Similar to C

• OpenCL program consists of two parts:
1 Main program (running on CPU)
2 One or more “kernels” (running on GPU)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Execution Model

nD Grid

Group
(0, 0)

Group
(0, 1)

Group
(1, 0)

Group
(1, 1)

Group
(2, 0)

Group
(2, 1)

Work Group (1, 0)

Item
(0, 0)

Item
(0, 1)

Item
(0, 2)

Item
(0, 3)

Item
(1, 0)

Item
(1, 1)

Item
(1, 2)

Item
(1, 3)

Item
(2, 0)

Item
(2, 1)

Item
(2, 2)

Item
(2, 3)

Item
(3, 0)

Item
(3, 1)

Item
(3, 2)

Item
(3, 3)

• Two-tiered Parallelism
• Grid = Nx × Ny × Nz work groups
• Work group = Sx × Sy × Sz work items
• Total:

∏
i∈{x,y ,z} SiNi work items

• Abstraction of core/SIMD lane HW
concept

• Comm/Sync only within work group

• Grid/Group ≈ outer loops in an algorithm

• Device Language:
get {global,group,local} {id,size}
(axis)

GPU Architecture (recap) Programming GPUs

(Credit: Andreas Kloeckner, Courant Institute, NYU)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Main program

• Runs on the CPU
• Handles the “administrative stuff”:

• Does various initialization chores (similar to MPI_INIT,
OMP_SET_NUM_THREADS, etc.)

• Specifies how to decompose the problem into a grid format
• Compiles the kernel(s) (done at run time for OpenCL!)
• Transfers data to/from the GPU

• Runs the kernel(s)
• Also does whatever can’t or shouldn’t be done on the GPU

• Input/Output
• Inherently serial computations

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Kernel(s)

• Run on the GPU (or CPU, for OpenCL)
• Typically simple
• Applied successively to every element of a buffer/array

• Kernel is like the body of a Fortran do loop
• Calling framework takes care of the surrounding “do/end
do” equivalent

• For good performance, should pay attention to local vs.
global memory (similar to CPU cache locality)

• Also best to avoid transferring data between main memory
and GPU more than necessary – I/O bus is slow

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL Example Program Sketch

// Header files omitted
int main() {

cl_context ctx; cl_command_queue queue; cl_int status;
create_context_on("NVIDIA", NULL, 0, &ctx, &queue, 0);

// Create array in main memory
float a[10000];
for (size_t i = 0; i < 10000; ++i) a[i] = i;

// Allocate memory on GPU, transfer data to GPU
cl_mem buf_a = clCreateBuffer(ctx, CL_MEM_READ_WRITE, 10000*sizeof(float), 0, &status);
CALL_CL_GUARDED(clEnqueueWriteBuffer,

(queue, buf_a , CL_TRUE, 0, 10000*sizeof(float), a, 0, NULL, NULL));

// Define and compile kernel
char* knl_text =

" __kernel void twice(__global float *a) { a[get_global_id(0)] *= 2.0; }";
cl_kernel knl = kernel_from_string(ctx , knl_text , "twice", NULL);

// Run on GPU
SET_1_KERNEL_ARG(knl, buf_a);
size_t gdim[] = { 10000 }; // Dimensions of global grid
size_t ldim[] = { 1 }; // Dimensions of local grid
CALL_CL_GUARDED(clEnqueueNDRangeKernel,

(queue, knl, 1, NULL, gdim, ldim, 0, NULL, NULL));

// Cleanup and error-checking omitted
}

(Adapted from Andreas Kloeckner)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Summary

• GPUs are a major new resource in scientific computing
• They work very differently from CPUs
• Using them can be a little involved . . .
• . . . but if your problem is suitable, the results can be worth it

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

References

• Andreas Kloeckner’s High Performance Scientific
Computing course at NYU:
http://cs.nyu.edu/courses/fall10/G22.
2945-001/lectures.html

• The Khronos Group’s OpenCL page:
http://www.khronos.org/opencl/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

