
AMath 483/583 — Lecture 24 — May 20, 2011

Today:
• The Graphical Processing Unit (GPU)
• GPU Programming

Today’s lecture developed and presented by Grady Lemoine

References:

Andreas Kloeckner’s High Performance Scientific Computing
course at NYU:
http://cs.nyu.edu/courses/fall10/G22.2945-001/
lectures.html

The Khronos Group’s OpenCL page:
http://www.khronos.org/opencl/
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What’s a GPU?

• GPU stands for Graphics
Processing Unit (a.k.a. graphics
card)

• Many models, not all suited to
scientific computing

• Performance improvements
driven by PC gaming market

• GPGPUs (General-Purpose
GPUs) developed only in the past
few years

• GPUs are not suited for every
task, but what they can do, they
do very well

• Sometimes 10x speedup over
CPU, sometimes more Photo credit: nVidia
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Some GPU application areas

GPUs are currently being used in:
• Fluid dynamics
• Atmospheric science
• Petroleum exploration
• Computational finance
• Medical imaging
• X-ray diffraction analysis
• Molecular dynamics
• ... and many other fields

NCAR WRF model, partially
GPU-accelerated

Credit: NCAR
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Where is a GPU?

• So far in this class we’ve just talked about CPU and RAM
• GPU is (usually) a separate entity
• Two broad types of GPU:

• Integrated: part of CPU or supporting chipset, uses same
RAM pool as CPU

• Discrete: separate chip or card, connected to chipset by I/O
bus, often has own RAM

• Integrated GPUs are generally less powerful
• GPUs for HPC are usually extremely powerful discrete

models
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GPU pros and cons

• Why should I use a GPU?
• Very high aggregate computation rate
• Low power consumption relative to work done (good

performance-per-watt)
• High-end GPUs use more power than high-end CPUs, but

perform much more computation

• Why should I not use a GPU?
• Massively parallel hardware – no good for inherently serial

computations
• More complex to program
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Differences between CPUs and GPUs

CPUs:
• Make a few threads run

fast individually
• Have a few powerful cores
• Reduce the need for the

programmer to
micromanage

GPUs:
• Make many threads run

fast in aggregate
• Have many weak “cores”
• Give the programmer

greater control

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Differences between CPUs and GPUs

• How to evolve from a CPU to a GPU:
1 Remove CPU parts used to improve single-thread

performance (caches, instruction reordering, branch
predictor, etc.)

2 Add more cores in the space freed up
3 Assume many cores using same instruction stream, so

share instruction decoding across multiple ALUs
(Arithmetic-Logical Units)

• Results in Single Instruction, Multiple Data (SIMD) model – a
bit different from SPMD model of OpenMP and MPI

4 Add more cores in the space freed up
5 Reduce clock speed, to reduce power consumption and

allow even more cores

• May end up with dozens of instruction streams, each
acting on 8+ data items at once
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Branches with SIMD

• Problem: What happens when an instruction stream has a
conditional that goes different ways for different data?

• Each group of ALUs must all execute the same instructions,
but those instructions might be wrong for some ALUs

• Solution: Cores for which the condition is true and those
for which it’s false execute separately

• Warning: Can reduce performance – some ALUs idle while
waiting for the other part of the branch

Code ALU 1 ALU 2 ALU 3 ALU 4 ALU 5 ALU 6
if (x >= 0) then T T F T T T
x2 = x ⇓ ⇓ ⊗ ⇓ ⇓ ⇓
else
x2 = -x ⊗ ⊗ ⇓ ⊗ ⊗ ⊗
end if
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Memory latency (yet again)

• Problem: Memory still has a long latency, and we’ve just
removed the cache hardware that helped us fight that...

• Solution: Hide latency by queueing many more threads
than we can run

• When thread 1 stalls for a memory request, thread 2 can
execute while it waits

• When thread 2 stalls, thread 3 can execute while it waits
• When thread 3 stalls...
• Eventually thread 1’s request finishes, and it can run again

once the current thread stalls
• Requires extra context-switching hardware, but cheaper

than the cache it replaced
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GPU memory hierarchy

• Discrete GPUs have their own on-board RAM
• Provides working space
• Saves using slow I/O bus to main memory

• They also have their own fast “working memory”
• Similar to cache on CPUs, but smaller
• Private to each group of ALUs

• Unlike with CPUs, program manages data transfer explicitly
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OpenCL Memory Model

Memory management is Explicit
You must move data from host -> global -> local … and back

• Private Memory

–Per work-item

• Local Memory

–Shared within a workgroup

• Global/Constant Memory

–Visible to all workgroups

• Host Memory

–On the CPU

Workgroup
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Compute  Device

Work-Item

Workgroup

Host

Private 
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Host Memory
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(Credit: Khronos Group)
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How to program for a GPU

• GPU hardware is very different from CPU hardware
• GPU programming is pretty different too
• Current recommended language: OpenCL

• “Open Computing Language”
• Support from all major GPU and CPU manufacturers
• Coordinated by the Khronos Group (non-profit industry

consortium)
• Similar to C

• OpenCL program consists of two parts:
1 Main program (running on CPU)
2 One or more “kernels” (running on GPU)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011



OpenCL: Execution Model
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• Two-tiered Parallelism
• Grid = Nx × Ny × Nz work groups
• Work group = Sx × Sy × Sz work items
• Total:

∏
i∈{x,y ,z} SiNi work items

• Abstraction of core/SIMD lane HW
concept

• Comm/Sync only within work group

• Grid/Group ≈ outer loops in an algorithm

• Device Language:
get {global,group,local} {id,size}
(axis)

GPU Architecture (recap) Programming GPUs

(Credit: Andreas Kloeckner, Courant Institute, NYU)
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OpenCL: Main program

• Runs on the CPU
• Handles the “administrative stuff”:

• Does various initialization chores (similar to MPI_INIT,
OMP_SET_NUM_THREADS, etc.)

• Specifies how to decompose the problem into a grid format
• Compiles the kernel(s) (done at run time for OpenCL!)
• Transfers data to/from the GPU

• Runs the kernel(s)
• Also does whatever can’t or shouldn’t be done on the GPU

• Input/Output
• Inherently serial computations
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OpenCL: Kernel(s)

• Run on the GPU (or CPU, for OpenCL)
• Typically simple
• Applied successively to every element of a buffer/array

• Kernel is like the body of a Fortran do loop
• Calling framework takes care of the surrounding “do/end
do” equivalent

• For good performance, should pay attention to local vs.
global memory (similar to CPU cache locality)

• Also best to avoid transferring data between main memory
and GPU more than necessary – I/O bus is slow
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OpenCL Example Program Sketch

// Header files omitted
int main() {

cl_context ctx; cl_command_queue queue; cl_int status;
create_context_on("NVIDIA", NULL, 0, &ctx, &queue, 0);

// Create array in main memory
float a[10000];
for (size_t i = 0; i < 10000; ++i) a[i] = i;

// Allocate memory on GPU, transfer data to GPU
cl_mem buf_a = clCreateBuffer(ctx, CL_MEM_READ_WRITE, 10000*sizeof(float), 0, &status);
CALL_CL_GUARDED(clEnqueueWriteBuffer,

(queue, buf_a , CL_TRUE, 0, 10000*sizeof(float), a, 0, NULL, NULL));

// Define and compile kernel
char* knl_text =

" __kernel void twice(__global float *a) { a[get_global_id(0)] *= 2.0; }";
cl_kernel knl = kernel_from_string(ctx , knl_text , "twice", NULL);

// Run on GPU
SET_1_KERNEL_ARG(knl, buf_a);
size_t gdim[] = { 10000 }; // Dimensions of global grid
size_t ldim[] = { 1 }; // Dimensions of local grid
CALL_CL_GUARDED(clEnqueueNDRangeKernel,

(queue, knl, 1, NULL, gdim, ldim, 0, NULL, NULL));

// Cleanup and error-checking omitted
}

(Adapted from Andreas Kloeckner)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011



Summary

• GPUs are a major new resource in scientific computing
• They work very differently from CPUs
• Using them can be a little involved . . .
• . . . but if your problem is suitable, the results can be worth it
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