AMath 483/583 — Lecture 24 — May 20, 2011

Today:
e The Graphical Processing Unit (GPU)
e GPU Programming

Today’s lecture developed and presented by Grady Lemoine
References:

Andreas Kloeckner’s High Performance Scientific Computing
course at NYU:
http://cs.nyu.edu/courses/£falll0/G22.2945-001/
lectures.html

The Khronos Group’s OpenCL page:
http://www.khronos.org/opencl/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

http://cs.nyu.edu/courses/fall10/G22.2945-001/lectures.html
http://cs.nyu.edu/courses/fall10/G22.2945-001/lectures.html
http://www.khronos.org/opencl/

What's a GPU?

o GPU stands for Graphics
Processing Unit (a.k.a. graphics
card)

e Many models, not all suited to
scientific computing

¢ Performance improvements
driven by PC gaming market

e GPGPUs (General-Purpose
GPUs) developed only in the past
few years

e GPUs are not suited for every

task, but what they can do, they
do very well

e Sometimes 10x speedup over
CPU, sometimes more Photo credit: nVidia

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Some GPU application areas

GPUs are currently being used in:

Fluid dynamics
Atmospheric science
Petroleum exploration
Computational finance
Medical imaging

X-ray diffraction analysis
Molecular dynamics

... and many other fields

R.J. LeVeque, University of Washington

Sinit - NeAR/ME Ini4: 00 UTC Fri 20 May 11
Valid 00 UTE Sab 21 May 11 118 MOT Fri 20 My 17)

NCAR WRF model, partially
GPU-accelerated

Credit: NCAR

AMath 483/583, Lecture 24, May 20, 2011

Where is a GPU?

So far in this class we’ve just talked about CPU and RAM

GPU is (usually) a separate entity
Two broad types of GPU:

¢ Integrated: part of CPU or supporting chipset, uses same
RAM pool as CPU

o Discrete: separate chip or card, connected to chipset by 1/0
bus, often has own RAM

Integrated GPUs are generally less powerful

GPUs for HPC are usually extremely powerful discrete
models

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

GPU pros and cons

e Why should | use a GPU?

e Very high aggregate computation rate
o Low power consumption relative to work done (good
performance-per-watt)
e High-end GPUs use more power than high-end CPUs, but
perform much more computation

e Why should | not use a GPU?

¢ Massively parallel hardware — no good for inherently serial
computations
¢ More complex to program

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Differences between CPUs and GPUs

CPUs:

e Make a few threads run
fast individually

e Have a few powerful cores

e Reduce the need for the
programmer to
micromanage

R.J. LeVeque, University of Washington

GPUs:

¢ Make many threads run
fast in aggregate

¢ Have many weak “cores”

¢ Give the programmer
greater control

AMath 483/583, Lecture 24, May 20, 2011

Differences between CPUs and GPUs

e How to evolve from a CPU to a GPU:

@ Remove CPU parts used to improve single-thread
performance (caches, instruction reordering, branch
predictor, etc.)

@® Add more cores in the space freed up

@® Assume many cores using same instruction stream, so
share instruction decoding across multiple ALUs
(Arithmetic-Logical Units)

e Results in Single Instruction, Multiple Data (SIMD) model — a
bit different from SPMD model of OpenMP and MPI

@ Add more cores in the space freed up

@® Reduce clock speed, to reduce power consumption and
allow even more cores

e May end up with dozens of instruction streams, each
acting on 8+ data items at once

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Branches with SIMD

e Problem: What happens when an instruction stream has a
conditional that goes different ways for different data?

e Each group of ALUs must all execute the same instructions,
but those instructions might be wrong for some ALUs
¢ Solution: Cores for which the condition is true and those
for which it's false execute separately
e Warning: Can reduce performance — some ALUs idle while
waiting for the other part of the branch

Code ALU 1 ALU2 ALU3 ALU4 ALUS5 ALUG6
if (x >= 0) then T T F T T T
x2 x J U ® {4 4 4
else

x2 -x ® ® A2 ® ® ®
end if

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

Memory latency (yet again)

¢ Problem: Memory still has a long latency, and we’ve just
removed the cache hardware that helped us fight that...

¢ Solution: Hide latency by queueing many more threads
than we can run

e When thread 1 stalls for a memory request, thread 2 can
execute while it waits

¢ When thread 2 stalls, thread 3 can execute while it waits
e When thread 3 stalls...

e Eventually thread 1’s request finishes, and it can run again
once the current thread stalls

¢ Requires extra context-switching hardware, but cheaper
than the cache it replaced

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

GPU memory hierarchy

e Discrete GPUs have their own on-board RAM

e Provides working space
e Saves using slow I/O bus to main memory

e They also have their own fast “working memory”

e Similar to cache on CPUs, but smaller
e Private to each group of ALUs

e Unlike with CPUs, program manages data transfer explicitly

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

O:

KHRON

OpenCL Memory Model

Private Private

* Private Memory R R fes RS
—Per work-item

¢ Local Memory
-Shared within a workgroup

Work-Item Work-Item Work-Item | |Work-Item

Workgroup Workgroup
-Visible to all workgroups P ————
¢ Host Memory Compute Device
-On the CPU

Host Memory

Memory management is Explicit
You must move data from host -> global -> local ... and back

© Copyright Khronos Group, 2011 - Page 7

(Credit: Khronos Group)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

How to program for a GPU

GPU hardware is very different from CPU hardware

GPU programming is pretty different too
Current recommended language: OpenCL
e “Open Computing Language”
e Support from all major GPU and CPU manufacturers
¢ Coordinated by the Khronos Group (non-profit industry
consortium)
e Similarto C
OpenCL program consists of two parts:
@ Main program (running on CPU)
@® One or more “kernels” (running on GPU)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Execution Model

nD Grid

e Two-tiered Parallelism
e Grid = N, x N, x N, work groups
e Work group = S, x S, x S, work items

’ N
7z ~
’

’
’

) e Total: Hie{x,y,z} SiN; work items
o Abstraction of core/SIMD lane HW
concept
e Comm/Sync only within work group
e Grid/Group = outer loops in an algorithm

e Device Language:
get_{global,group,local} {id,size}
(axis)

GPU Architecture (recap) Programming GPUs

(Credit: Andreas Kloeckner, Courant Institute, NYU)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Main program

Runs on the CPU
Handles the “administrative stuff”:

e Does various initialization chores (similar to MPT_INIT,
OMP_SET_NUM_THREADS, etc.)

e Specifies how to decompose the problem into a grid format

e Compiles the kernel(s) (done at run time for OpenCL!)

¢ Transfers data to/from the GPU

Runs the kernel(s)

Also does whatever can’t or shouldn’t be done on the GPU

¢ Input/Output
¢ Inherently serial computations

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL: Kernel(s)

Run on the GPU (or CPU, for OpenCL)
Typically simple
Applied successively to every element of a buffer/array
¢ Kernel is like the body of a Fortran do loop
e Calling framework takes care of the surrounding “do/end
do” equivalent
For good performance, should pay attention to local vs.
global memory (similar to CPU cache locality)

¢ Also best to avoid transferring data between main memory
and GPU more than necessary — I/O bus is slow

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

OpenCL Example Program Sketch

// Header files omitted
int main() {

cl_context ctx; cl_command_queue queue; cl_int status;
create_context_on ("NVIDIA", NULL, 0, &ctx, &queue, 0);

// Create array in main memory
float a[10000];
for (size_t i = 0; i < 10000; ++i) ali] = i;
// Allocate memory on GPU, transfer data to GPU
cl_mem buf_a = clCreateBuffer (ctx, CL_MEM_READ_WRITE, 10000xsizeof (float),
CALL_CL_GUARDED (clEnqueueWriteBuffer,

(queue, buf_a , CL_TRUE, 0, 10000xsizeof(float), a, 0, NULL, NULL));

// Define and compile kernel
char knl_text =

__kernel void twice(__global float xa) { alget_global_id(0)] %= 2.0; }";

cl_kernel knl = kernel from_ string(ctx , knl_text , "twice", NULL);

// Run on GPU
SET_1_KERNEL_ARG (knl, buf_a);
size_t gdim[] = { 10000 }; // Dimensions of global grid
size_t ldim[] = { 1 }; // Dimensions of local grid
CALL_CL_GUARDED (clEnqueueNDRangeKernel,

(queue, knl, 1, NULL, gdim, ldim, 0, NULL, NULL));

// Cleanup and error-checking omitted

(Adapted from Andreas Kloeckner)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

0,

&status);

Summary

GPUs are a major new resource in scientific computing
They work very differently from CPUs

Using them can be a little involved . ..

... but if your problem is suitable, the results can be worth it

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

References

e Andreas Kloeckner’s High Performance Scientific
Computing course at NYU:
http://cs.nyu.edu/courses/£falll0/G22.
2945-001/1lectures.html

e The Khronos Group’s OpenCL page:
http://www.khronos.org/opencl/

R.J. LeVeque, University of Washington AMath 483/583, Lecture 24, May 20, 2011

http://cs.nyu.edu/courses/fall10/G22.2945-001/lectures.html
http://cs.nyu.edu/courses/fall10/G22.2945-001/lectures.html
http://www.khronos.org/opencl/

	Lecture 24
	GPU programming

