
AMath 483/583 — Lecture 20 — May 11, 2011

Today:
• Heat equation and discretization
• Iterative methods

Friday:
• Iterative methods

Read: Class notes and references

$CLASSHG/codes/openmp/jacobi1.f90

$CLASSHG/codes/openmp/jacobi2_omp.f90

$CLASSHG/codes/mpi/jacobi2_mpi.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 20, May 11, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/jacobi1.html
http://www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/jacobi2_omp.html
http://www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/jacobi2_mpi.html


Heat Equation / Diffusion Equation

Partial differential equation for u(x, t) in one space dimension
and time.

u represents temperature in a 1-dimensional metal rod, for
example.

Or concentration (density) of a chemical diffusing in a tube of
water.

The PDE is
ut(x, t) = Duxx(x, t) + f(x, t)

where subscripts represent partial derivatives,

D = diffusion coefficient,

f(x, t) = source term.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 20, May 11, 2011



Heat Equation / Diffusion Equation

Partial differential equation for u(x, t) in one space dimension
and time.

u represents temperature in a 1-dimensional metal rod, for
example.

Or concentration (density) of a chemical diffusing in a tube of
water.

The PDE is
ut(x, t) = Duxx(x, t) + f(x, t)

where subscripts represent partial derivatives,

D = diffusion coefficient,

f(x, t) = source term.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 20, May 11, 2011



Steady state diffusion

If f(x, t) = f(x) does not depend on time and if the boundary
conditions don’t depend on time, then u(x, t) will converge
towards steady state distribution satisfying

0 = Duxx(x) + f(x)

(by setting ut = 0.)

This is now an ordinary differential equation (ODE) for u(x).

We can solve this on an interval, say 0 ≤ x ≤ 1 with

Boundary conditions:

u(0) = α, u(1) = β.
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Steady state diffusion

More generally: Take D = 1 or absorb in f ,

uxx(x) = −f(x) for 0 ≤ x ≤ 1,

Boundary conditions:

u(0) = α, u(1) = β.

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

Example: f(x) = 0, α = 20, β = 60:

Solution: u(x) = α+ x(β − α).

No heat source =⇒ linear variation in steady state (uxx = 0).
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Steady state diffusion

More generally: Take D = 1 or absorb in f ,

uxx(x) = −f(x) for 0 ≤ x ≤ 1,

Boundary conditions:

u(0) = α, u(1) = β.

Can be solved exactly if we can integrate f twice and use
boundary conditions to choose the two constants of integration.

More interesting example:

Example: f(x) = 100ex, α = 20, β = 60:

Solution: u(x) = −100ex + (100e− 60)x+ 120.
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Steady state diffusion

For more complicated equations, numerical methods must
generally be used, giving approximations at discrete points.
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Finite difference method

Define grid points xi = i∆x in interval 0 ≤ x ≤ 1, where

∆x =
1

n+ 1

So x0 = 0, xn+1 = 1, and the n grid points x1, x2, . . . , xn are
equally spaced inside the interval.

Let Ui ≈ u(xi) denote approximate solution.

We know U0 = α and Um+1 = β from boundary conditions.

Idea: Replace differential equation for u(x) by system of n
algebraic equations for Ui values (i = 1, 2, . . . , n).
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Finite difference method

Ui ≈ u(xi)

ux(xi+1/2) ≈ Ui+1−Ui

∆x

ux(xi−1/2) ≈ Ui−Ui−1

∆x

So we can approximate second derivative at xi by:

uxx(xi) ≈
1

∆x

(
Ui+1 − Ui

∆x
− Ui − Ui−1

∆x

)
=

1
∆x2

(Ui−1 − 2Ui + Ui+1)

This gives coupled system of n linear equations:

1
∆x2

(Ui−1 − 2Ui + Ui+1) = −f(xi)

for i = 1, 2, . . . , n. With U0 = α and Um+1 = β.
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Tridiagonal linear system

For n = 5:
−2 1 0 0 0
1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2



U1

U2

U3

U4

U5

 = −∆x2


f(x1)
f(x2)
f(x3)
f(x4)
f(x5)

−

α
0
0
0
β

 .

General n× n system requires O(n3) flops to solve.

Tridiagonal n× n system requires O(n) flops to solve.

Could use LAPACK routine dgtsv.
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Heat equation in 2 dimensions

One-dimensional equation generalizes to

ut(x, y, t) = D(uxx(x, y, t) + uyy(x, y, t)) + f(x, y, t)

on some domain in the x-y plane, with initial and boundary
conditions.

We will only consider rectangle 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Steady state problem (with D = 1):

uxx(x, y) + uyy(x, y) = −f(x, y)
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Finite difference equations in 2D

Let Uij ≈ u(xi, yj).

Replace differential equation

uxx(x, y) + uyy(x, y) = −f(x, y)

by algebraic equations

1
∆x2

(Ui−1,j − 2Ui,j + Ui+1,j)

+
1

∆y2
(Ui,j−1 − 2Ui,j + Ui,j+1) = −f(xi, yj)

If ∆x = ∆y = h:

1
h2

(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = −f(xi, yj).
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Finite difference equations in 2D

1
h2

(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = −f(xi, yj).

On n× n grid (∆x = ∆y = 1/(n+ 1)) this gives a linear system
of n2 equations in n2 unknowns.

The above equation must be satisfied for i = 1, 2, . . . , n and
j = 1, 2, . . . , n.

Matrix is n2 × n2,
e.g. on 100 by 100 grid, matrix is 10, 000× 10, 000.

Contains (10, 000)2 = 100, 000, 000 elements.

Matrix is sparse: each row has at most 5 nonzeros out of n2

elements! But structure is no longer tridiagonal.
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Finite difference equations in 2D

Matrix has block tridiagonal structure:

A =
1
h2


T I
I T I

I T I
I T

 T =


−4 1

1 −4 1
1 −4 1

1 −4
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Iterative methods

Back to one space dimension first...

Coupled system of n linear equations:

(Ui−1 − 2Ui + Ui+1) = −∆x2f(xi)

for i = 1, 2, . . . , n. With U0 = α and Um+1 = β.

Iterative method starts with initial guess U [0] to solution and
then improves U [k] to get U [k+1] for k = 0, 1, . . ..

Note: Generally does not involve modifying matrix A.

Do not have to store matrix A at all, only know about stencil.
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Jacobi iteration

(Ui−1 − 2Ui + Ui+1) = −∆x2f(xi)

Solve for Ui:

Ui =
1
2
(
Ui−1 + Ui+1 + ∆x2f(xi)

)
.

Note: With no heat source, f(x) = 0,
the temperature at each point is average of neighbors.

Suppose U [k] is a approximation to solution. Set

U
[k+1]
i =

1
2

(
U

[k]
i−1 + U

[k]
i+1 + ∆x2f(xi)

)
for i = 1, 2, . . . , n.

Repeat for k = 0, 1, 2, . . . until convergence.

Can be shown to converge (eventually... very slow!)
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Slow convergence of Jacobi
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Iterative methods

Jacobi iteration is about the worst possible iterative method.

But it’s very simple, and useful as a test for parallelization.

Better iterative methods:

• Gauss-Seidel
• Successive Over-Relaxation (SOR)
• Conjugate gradients
• Preconditioned conjugate gradients
• Multigrid
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Speedup for problems like steady state heat equation

Source: SIAM Review
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Iterative methods – initialization

! allocate storage for boundary points too:
allocate(x(0:n+1), u(0:n+1), f(0:n+1))

dx = 1.d0 / (n+1.d0)

!$omp parallel do
do i=0,n+1

! grid points:
x(i) = i*dx
! source term:
f(i) = 100.*exp(x(i))
! initial guess (linear function):
u(i) = alpha + x(i)*(beta-alpha)
enddo
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Jacobi iteration in Fortran

uold = u ! starting values before updating

do iter=1,maxiter

dumax = 0.d0

do i=1,n
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
dumax = max(dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit

uold = u ! for next iteration
enddo

Note: we must use old value at i− 1 for Jacobi.

Otherwise we get the Gauss-Seidel method.
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Jacobi with OpenMP parallel do (fine grain)

uold = u ! starting values before updating

do iter=1,maxiter

dumax = 0.d0

!$omp parallel do reduction(max : dumax)
do i=1,n
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
dumax = max(dumax, abs(u(i)-uold(i)))
enddo

! check for convergence:
if (dumax .lt. tol) exit

!$omp parallel do
do i=1,n

uold(i) = u(i) ! for next iteration
enddo

enddo

Note: Forking threads twice each iteration.
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Jacobi with OpenMP – coarse grain

General Approach:

• Fork threads only once at start of program.

• Each thread is responsible for some portion of the arrays,
from i=istart to i=iend.

• Each iteration, must copy u to uold, update u, check for
convergence.

• Convergence check requires coordination between threads
to get global dumax.

• Print out final result after leaving parallel block

See code in the repository or the notes:
$CLASSHG/codes/openmp/jacobi2_omp.f90
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Jacobi with MPI

Each process is responsible for some portion of the arrays,
from i=istart to i=iend.

No shared memory: each process only has part of array.

Updating formula:
u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))

Need to exchange values at boundaries:
Updating at i=istart requires uold(istart-1)
Updating at i=iend requires uold(istart+1)

Example with n = 9 interior points (plus boundaries):

Process 0 has istart = 1, iend = 5
Process 1 has istart = 6, iend = 9
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Jacobi with MPI

Other issues:

• Convergence check requires coordination between
processes to get global dumax.
Use MPI_ALLREDUCE so all process check same value.

• Part of final result must be printed by each process
(into common file heatsoln.txt), in proper order.

See code in the repository or the notes:
$CLASSHG/codes/mpi/jacobi2_mpi.f90
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Jacobi with MPI — Sending to neighbors

call mpi_comm_rank(MPI_COMM_WORLD, me, ierr)
...

do iter = 1, maxiter
uold = u

if (me > 0) then
! Send left endpoint value to "left"
call mpi_isend(uold(istart), 1, MPI_DOUBLE_PRECISION, &

me - 1, 1, MPI_COMM_WORLD, req1, ierr)
end if

if (me < ntasks-1) then
! Send right endpoint value to "right"
call mpi_isend(uold(iend), 1, MPI_DOUBLE_PRECISION, &

me + 1, 2, MPI_COMM_WORLD, req2, ierr)
end if

end do

Note: Non-blocking mpi_isend is used,

Different tags (1 and 2) for left-going, right-going messages.
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Jacobi with MPI — Receiving from neighbors

Note: uold(istart) from me+1 goes into uold(iend+1):
uold(iend) from me-1 goes into uold(istart-1):

do iter = 1, maxiter

! mpi_send’s from previous slide

if (me < ntasks-1) then
! Receive right endpoint value
call mpi_recv(uold(iend+1), 1, MPI_DOUBLE_PRECISION, &

me + 1, 1, MPI_COMM_WORLD, mpistatus, ierr)
end if

if (me > 0) then
! Receive left endpoint value
call mpi_recv(uold(istart-1), 1, MPI_DOUBLE_PRECISION, &

me - 1, 2, MPI_COMM_WORLD, mpistatus, ierr)
end if

! Apply Jacobi iteration on my section of array
do i = istart, iend

u(i) = 0.5d0*(uold(i-1) + uold(i+1) + dx**2*f(i))
dumax_task = max(dumax_task, abs(u(i) - uold(i)))
end do

end do
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Jacobi with MPI — Writing solution in order

Want to write table of values x(i),u(i) in heatsoln.txt.

Need them to be in proper order, so Process 0 must write to
this file first, then Process 1, etc.

Approach:

Each process me waits for a message from me-1 indicating that
it has finished writing its part. (Contents not important.)

Each process must open the file (without clobbering values
already there), write to it, then close the file.

Assumes all processes share a file system!

On cluster or supercomputer, need to either:
send all results to single process for writing, or
write distributed files that may need to be combined later

(some visualization tools handle distributed data!)
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