
AMath 483/583 — Lecture 2 — March 30, 2011

Today:

• Unix

• Version control — main ideas

• Client-server version control, e.g., CVS, svn

• Distributed version control, e.g., Mercurial, GIT

Friday:
• Mercurial examples

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Outline of quarter

• Unix
• Version control (Mercurial)
• Compiled vs. interpreted languages
• Fortran 90
• Makefiles
• Parallel computing
• OpenMP
• MPI (message passing interface)
• Python scripting
• Graphics / visualization

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

TA and Office Hours

TA: Grady Lemoine

See the Class Catalyst Page for contact info, updated hours.

RJL’s office hours in Guggenheim 415C:
Monday, Wednesday, Friday 4:30 – 5:30

Grady’s office hours in Guggenheim 406:
Monday, Tuesday, Friday 1:30 – 2:30

There is also a Discussion Board on the Class Catalyst Page,
feel free to post (and answer!) questions about getting things
to work.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

https://catalysttools.washington.edu/workspace/rjl/20726/
https://catalysttools.washington.edu/workspace/rjl/20726

Other references and sources

• Links in notes and bibliography (more to come...)

• Wikipedia often has good intros and summaries.

• Software Carpentry course of Greg Wilson, Toronto.

• Other courses at universities or supercomputer centers.
See bibliography.

• Textbooks. See bibliography.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/notes/biblio.html
http://software-carpentry.org/
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/biblio.html
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/biblio.html

Unix (and Linux, Mac OS X, etc.)

See the class notes Unix page for a brief intro and many links.

Unix commands will be introduced as needed and mostly
discussed in the context of other things.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

http:www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/unix.html

Version control systems

Originally developed for large software projects with many
developers.

Also useful for single user, e.g. to:
• Keep track of history and changes to files,

• Be able to revert to previous versions,

• Keep many different versions of code well organized,

• Easily archive exactly the version used for results in
publications,

• Keep work in sync on multiple computers.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Server-client model:

Original style, still widely used (e.g. CVS, Subversion)

One central repository on server.

Developers’ workflow (simplified!):
• Check out a working copy,
• Make changes, test and debug,
• Check in (commit) changes to repository (with comments).

This creates new version number.
• Run an update on working copy to bring in others’

changes.

The system keeps track of diffs from one version to the next
(and info on who made the changes, when, etc.)

A changeset is a collection of diffs from one commit.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Server-client model:

Only the server has the full history.

The working copy has:
• Latest version from repository (from last checkout, commit,

or update)

• Your local changes that are not yet committed.

Note:
• You can retrieve older versions from the server.

• Can only commit or update when connected to server.

• When you commit, it will be seen by anyone else who does
an update from the repository.

Often there are trunk and branches subdirectories.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Server-client model:

Only the server has the full history.

The working copy has:
• Latest version from repository (from last checkout, commit,

or update)

• Your local changes that are not yet committed.

Note:
• You can retrieve older versions from the server.

• Can only commit or update when connected to server.

• When you commit, it will be seen by anyone else who does
an update from the repository.

Often there are trunk and branches subdirectories.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Distributed version control

Mercurial (hg) uses a distributed model:

When you clone a repository you get all the history too,
All stored in .hg subdirectory of top directory.

Usually don’t want to mess with this!

Ex: (backslash is continuation character in shell)

$ hg clone \
http://bitbucket.org/rjleveque/uwamath583s11 \
mydirname

will make a complete copy of the class repository and call it
mydirname. If mydirname is omitted, it will be called
uwamath583s11.

This directory has a subdirectory .hg with complete history.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Distributed version control

Mercurial (hg) uses a distributed model:
• hg commit commits to your clone’s .hg directory.

• hg push sends your recent changesets to another clone
by default: the one you cloned from (e.g. bitbucket),
but you can push to any other clone (with write
permission).

• hg pull pulls changesets from another clone
by default: the one you cloned from (e.g. bitbucket)

• hg update applies changesets to your working copy

Note: pushing, pulling, updating only needed if there are
multiple clones.

Friday: simpler example of using hg in a single directory.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Distributed version control

Advantages of distributed model:

• You can commit changes, revert to earlier versions,
examine history, etc. without being connected to server.

• Also without affecting anyone else’s version if you’re
working collaboratively. Can commit often while debugging.

• No problem if server dies, every clone has full history.

For collaboration will still need to push or pull changes
eventually and may need hg merge.

Note: If you use two different clones of your bitbucket repos.
(e.g. on different machines), always do hg pull -u before making
local changes or you will have to learn how to merge.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Distributed version control

Advantages of distributed model:

• You can commit changes, revert to earlier versions,
examine history, etc. without being connected to server.

• Also without affecting anyone else’s version if you’re
working collaboratively. Can commit often while debugging.

• No problem if server dies, every clone has full history.

For collaboration will still need to push or pull changes
eventually and may need hg merge.

Note: If you use two different clones of your bitbucket repos.
(e.g. on different machines), always do hg pull -u before making
local changes or you will have to learn how to merge.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Bitbucket

You can examine class repository at:
http://bitbucket.org/rjleveque/uwamath583s11

Demo of Source, Changeset tabs...

See also http:
//mercurial.selenic.com/wiki/UnderstandingMercurial

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

http://bitbucket.org/rjleveque/uwamath583s11
http://mercurial.selenic.com/wiki/UnderstandingMercurial
http://mercurial.selenic.com/wiki/UnderstandingMercurial

Aside on Unix diff

Often very useful (beyond version control).

Displays the differences between two files.

Ex: Go into $CLASSHG/codes/fortran and you will see files
demo1.f90 and demo1.f90, which has been slightly changed.

$ diff demo1.f90 demo2.f90
6c6
< ! Changed one variable name to illustrate ’hg diff’

> ! This version has a bug!
11c11
< integer :: m

> integer :: n

The lines marked < are from the first file, those marked > are
from the second.
The other lines mean:

Lines 6 and 11 were changed as indicated.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Aside on Unix diff, xxdiff

For files with many changes, you may want to do:

$ diff demo1.f90 demo2.f90| more

The vertical bar means pipe the output of the first command to
the second command. The more command displays 1
screenfull at a time.

Or try xxdiff, which opens a window displaying the files side by
side with changes highlighted.

$ xxdiff demo1.f90 demo2.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

hg diff command

Now try:

$ cd $CLASSHG/codes/fortran
$ hg log demo1.f90 | more

Lists all the hg changesets in which file demo1.f90 was
changed.

Note changeset 10:54971910d50a has the log message
“Fixed a bug: forgot to change n to m in declaration”.

(Number 10: is clone-dependent!)

To see the changes from previous version:

$ hg diff -r9 -r10 demo1.f90 | more

To see if any changes were made since then:

$ hg diff -r10 tip demo1.f90 | more

tip means most recent committed version.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

hg diff command

To see if any changes were made in working copy compared to
tip:

$ hg diff demo1.f90 | more

$ hg diff | more # shows diffs in all files

To check status of files in working version:

$ hg status # for entire clone
$ hg status . # for this directory
$ hg status -amr # added, modified, removed
$ hg status *.f90 # only for .f90 files

$ hg help status # for more options

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

Using xxdiff in hg

Modify the file .hg/hgrc, to add:

[extensions]
hgext.extdiff =

(Put in $HOME/.hgrc to apply in all directories.)

Then you can do:

$ hg extdiff -p xxdiff -r9 -r10 demo1.f90

Might want to add to .bashrc:

alias hgd = "hg extdiff -p xxdiff"

Then you can do:

$ hgd -r9 -r10 demo1.f90

R.J. LeVeque, University of Washington AMath 483/583, Lecture 2, March 30, 2011

	Lecture 2
	Unix
	Version control
	diff

