AMath 483/583 - Lecture 17 - May 4, 2011

Today:

- Adaptive quadrature, recursive functions
- Load balancing with OpenMP
- nested forking

Friday:

- MPI

Read: Class notes and references
\$CLASSHG/codes/adaptive_quadrature

Adaptive quadrature

Problem: Approximate
$\int_{-1}^{4} e^{-\beta^{2} x^{2}}+\sin (x) d x=\left[\frac{\sqrt{\pi}}{2 \beta} \operatorname{erf}(\beta x)-\cos (x)\right]_{-1}^{4}$
where erf is the error function.
$\beta=10$:

Adaptive Quadrature

The basic ideas will be described on the board...
See codes in \$CLASSHG/codes/adaptive_quadrature
../serial: Serial code with recursive subroutine
. . /openmp1: OpenMP splitting into two pieces
. . /openmp2: OpenMP with nested forks

Adaptive quadrature - recursion

Selected lines from

! \$CLASSHG/codes/adaptive_quadrature/serial/adapquad_mod.f90

```
recursive subroutine adapquad(f,a,b,tol,intest,errest,level,fa,fb)
! Note that level, fa, fb are optional arguments
trapezoid = 0.5d0*(b-a)*(f_a + f_b)
simpson = (b-a)*(f_a + 4.d0*fmid + f_b) / 6.d0
errest = trapezoid - simpson
if ((abs(errest) > tol) .and. (thislevel < maxlevel)) then
    tol2 = tol / 2.d0
    nextlevel = thislevel + 1
    call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid)
    call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b)
    intest = intest1 + intest2
    errest = errest1 + errest2
else
    intest = trapezoid
endif
! =================
! in main program:
    call adapquad(g, a, b, tol, int_approx, errest)
```


Adaptive quadrature with tol $=0.5$

approx $=0.1137155690293 \mathrm{E}+01$
true $=0.1371191311822 \mathrm{E}+01$
error $=-0.234 \mathrm{E}+00$
errest $=-0.578 \mathrm{E}-01$
g was evaluated $\quad 11$ times

Adaptive quadrature with tol $=0.1$

approx $=0.1362137584045 \mathrm{E}+01$
true $=0.1371191311822 \mathrm{E}+01$
error $=-0.905 \mathrm{E}-02$
errest $=-0.929 \mathrm{E}-02$
g was evaluated
49 times

Adaptive quadrature with tol $=0.01$


```
approx \(=0.1369497995450 \mathrm{E}+01\)
true \(=0.1371191311822 \mathrm{E}+01\)
error \(=-0.169 \mathrm{E}-02\)
errest \(=-0.171 \mathrm{E}-02\)
g was evaluated 133 times
```


Adaptive quadrature - OpenMP

First attempt: split up original interval into 2 pieces in main program...
! \$CLASSHG/codes/adaptive_quadrature/openmp1/testquad.f9

```
xmid = 0.5d0* (a+b)
tol2 = tol / 2.d0
    !$omp parallel sections
    !$omp section
    call adapquad(g,a,xmid,tol2,intest1,errest1)
    !$omp section
    call adapquad(g,xmid,b,tol2,intest2,errest2)
    !$omp end parallel sections
int_approx = intest1 + intest2
errest = errest1 + errest2
```

May exhibit poor load balancing if much more work has to be done in one half than the other.

Adaptive quadrature with tol $=0.1$

Two threads, with OpenMP applied at top level only.

Thread 0 works only on left half, Thread 1 works only on right half

Blue: Thread 0
Red: Thread 1

Adaptive quadrature with tol $=0.01$

Two threads, with OpenMP applied at top level only.

Note that Thread 1 is done before Thread 0

Blue: Thread 0 Red: Thread 1

Poor load balancing if function is much smoother on one half of interval than the other!

Adaptive quadrature - OpenMP

Better approach: Allow nested calls to OpenMP.

```
! $CLASSHG/codes/adaptive_quadrature/openmp2/testquad.f90
! Allow nested OpenMP threading:
!$ call omp_set_nested(.true.)
call adapquad(g, a, b, tol, int_approx, errest)
! =============
```

! \$CLASSHG/codes/adaptive_quadrature/openmp2/adapquad_mod.f90

```
if ((abs(errest) > tol) .and. (thislevel < maxlevel)) then
    ! recursively apply this subroutine to each half, with
    ! tolerance tol/2 for each, and nextlevel = thislevel+1:
    tol2 = tol / 2.d0
    nextlevel = thislevel + 1
```

 ! \$omp parallel sections
 ! \$omp section
 call adapquad(f,a,xmid,tol2,intest1,errest1, nextlevel,f_a,fmid
 ! \$omp section
 call adapquad(f,xmid,b,tol2, intest 2 , errest 2 , nextlevel,fmid,f_b
 ! \$omp end parallel sections

Adaptive quadrature with tol $=0.1$

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Blue: Thread 0
Red: Thread 1

Adaptive quadrature with tol $=0.1$

Running same thing a second time gives different pattern:

Next available thread takes each interval to be handled.

Subintervals used for each Trapezoid rule

Blue: Thread 0
Red: Thread 1

Adaptive quadrature with tol $=0.01$

Two threads, with nested OpenMP calls

Next available thread takes each interval to be handled.

Blue: Thread 0
Red: Thread 1

