
AMath 483/583 — Lecture 17 — May 4, 2011

Today:
• Adaptive quadrature, recursive functions
• Load balancing with OpenMP
• nested forking

Friday:
• MPI

Read: Class notes and references

$CLASSHG/codes/adaptive_quadrature

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature

Problem: Approximate∫ 4

−1
e−β

2x2
+ sin(x) dx =

[√
π

2β
erf(βx)− cos(x)

]4

−1

where erf is the error function.

β = 10:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive Quadrature

The basic ideas will be described on the board...

See codes in $CLASSHG/codes/adaptive_quadrature

../serial: Serial code with recursive subroutine

../openmp1: OpenMP splitting into two pieces

../openmp2: OpenMP with nested forks

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature — recursion
Selected lines from

! $CLASSHG/codes/adaptive_quadrature/serial/adapquad_mod.f90

recursive subroutine adapquad(f,a,b,tol,intest,errest,level,fa,fb)
! Note that level, fa, fb are optional arguments

trapezoid = 0.5d0*(b-a)*(f_a + f_b)
simpson = (b-a)*(f_a + 4.d0*fmid + f_b) / 6.d0
errest = trapezoid - simpson

if ((abs(errest) > tol) .and. (thislevel < maxlevel)) then
tol2 = tol / 2.d0
nextlevel = thislevel + 1
call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid)
call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b)
intest = intest1 + intest2
errest = errest1 + errest2

else
intest = trapezoid

endif

!=================
! in main program:

call adapquad(g, a, b, tol, int_approx, errest)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.5

approx = 0.1137155690293E+01
true = 0.1371191311822E+01
error = -0.234E+00
errest = -0.578E-01
g was evaluated 11 times

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.1

approx = 0.1362137584045E+01
true = 0.1371191311822E+01
error = -0.905E-02
errest = -0.929E-02
g was evaluated 49 times

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.01

approx = 0.1369497995450E+01
true = 0.1371191311822E+01
error = -0.169E-02
errest = -0.171E-02
g was evaluated 133 times

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature — OpenMP

First attempt: split up original interval into 2 pieces in main
program...

! $CLASSHG/codes/adaptive_quadrature/openmp1/testquad.f90

xmid = 0.5d0*(a+b)
tol2 = tol / 2.d0

!$omp parallel sections
!$omp section

call adapquad(g,a,xmid,tol2,intest1,errest1)
!$omp section

call adapquad(g,xmid,b,tol2,intest2,errest2)
!$omp end parallel sections

int_approx = intest1 + intest2
errest = errest1 + errest2

May exhibit poor load balancing if much more work has to be
done in one half than the other.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.1

Two threads, with OpenMP applied at top level only.

Thread 0 works only on left half, Blue: Thread 0
Thread 1 works only on right half Red: Thread 1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.01

Two threads, with OpenMP applied at top level only.

Note that Thread 1 is Blue: Thread 0
done before Thread 0 Red: Thread 1

Poor load balancing if function is much smoother
on one half of interval than the other!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature — OpenMP

Better approach: Allow nested calls to OpenMP.

! $CLASSHG/codes/adaptive_quadrature/openmp2/testquad.f90

! Allow nested OpenMP threading:
!$ call omp_set_nested(.true.)

call adapquad(g, a, b, tol, int_approx, errest)

!============

! $CLASSHG/codes/adaptive_quadrature/openmp2/adapquad_mod.f90

if ((abs(errest) > tol) .and. (thislevel < maxlevel)) then
! recursively apply this subroutine to each half, with
! tolerance tol/2 for each, and nextlevel = thislevel+1:
tol2 = tol / 2.d0
nextlevel = thislevel + 1

!$omp parallel sections
!$omp section

call adapquad(f,a,xmid,tol2,intest1,errest1,nextlevel,f_a,fmid)
!$omp section

call adapquad(f,xmid,b,tol2,intest2,errest2,nextlevel,fmid,f_b)
!$omp end parallel sections

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.1

Two threads, with nested OpenMP calls

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.1

Running same thing a second time gives different pattern:

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

Adaptive quadrature with tol = 0.01

Two threads, with nested OpenMP calls

Next available thread takes Blue: Thread 0
each interval to be handled. Red: Thread 1

R.J. LeVeque, University of Washington AMath 483/583, Lecture 17, May 4, 2011

	Lecture 17
	Adaptive quadrature

