
AMath 483/583 — Lecture 16 — May 2, 2011

Today:
• Fine grain vs. coarse grain parallelism
• Manually splitting do loops among threads

Wednesday:
• Adaptive quadrature, recursive functions
• Start MPI?

Read: Class notes and references

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each
thread deal with one piece.

May need to synchronize or share information at some points.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each
thread deal with one piece.

May need to synchronize or share information at some points.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Solution of independent ODEs by Euler’s method

Solve u′
i(t) = ciui(t) for t ≥ 0

with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for
i = 1, 2, . . . , n with n large too.

This problem is embarassingly parallel: Problem for each i is
completely decoupled from problem for any other i. Could solve
them all simultaneously with no communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Solution of independent ODEs by Euler’s method

Solve u′
i(t) = ciui(t) for t ≥ 0

with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for
i = 1, 2, . . . , n with n large too.

This problem is embarassingly parallel: Problem for each i is
completely decoupled from problem for any other i. Could solve
them all simultaneously with no communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Solution of independent ODEs by Euler’s method

Solve u′
i(t) = ciui(t) for t ≥ 0

with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for
i = 1, 2, . . . , n with n large too.

This problem is embarassingly parallel: Problem for each i is
completely decoupled from problem for any other i. Could solve
them all simultaneously with no communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Solution of independent ODEs by Euler’s method

Solve u′
i(t) = ciui(t) for t ≥ 0

with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

Implement this for large number of time steps for
i = 1, 2, . . . , n with n large too.

This problem is embarassingly parallel: Problem for each i is
completely decoupled from problem for any other i. Could solve
them all simultaneously with no communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Fine grain solution with parallel do loops

!$omp parallel do
do i=1,n

u(i) = eta(i)
enddo

do m=1,nsteps
!$omp parallel do
do i=1,n

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo

Note that threads are forked nsteps+1 times.

Requires shared memory:
don’t know which thread will handle each i.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Coarse grain solution of ODEs

Split up i = 1, 2, . . . , n into nthreads disjoint sets.
A set goes from i=istart to i=iend
These private values are different for each thread.

Each thread handles 1 set for the entire problem.

!$omp parallel private(istart,iend,i,m)

istart = ??
iend = ??

do i=istart,iend
u(i) = eta(i)
enddo

do m=1,nsteps
do i=istart,iend

u(i) = (1.d0 + dt*c(i))*u(i)
enddo

enddo
!$omp end parallel

Threads are forked only once,
Each thread only needs subset of data.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Setting istart and iend

Example: If n=100 and nthreads = 2, we would want:

Thread 0: istart= 1 and iend= 50,
Thread 1: istart=51 and iend=100.

If nthreads divides n evenly...

points_per_thread = n / nthreads

!$omp parallel private(thread_num, istart, iend, i)

thread_num = 0 ! needed in serial mode
!$ thread_num = omp_get_thread_num()

istart = thread_num * points_per_thread + 1
iend = (thread_num+1) * points_per_thread

do i=istart,iend
! work on thread’s part of array
enddo

...

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Setting istart and iend more generally

Example: If n=101 and nthreads = 2, we would want:

Thread 0: istart= 1 and iend= 51,
Thread 1: istart=52 and iend=101.

If nthreads might not divide n evenly...

points_per_thread = (n + nthreads - 1) / nthreads

!$omp parallel private(thread_num, istart, iend, i)

thread_num = 0 ! needed in serial mode
!$ thread_num = omp_get_thread_num()

istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

do i=istart,iend
! work on thread’s part of array
enddo

...

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Example: Normalizing a vector

Given a vector (1-dimensional array) x,
Compute the normalized vector x/‖x‖1, with ‖x‖1 =

∑n
i=1 |xi|

Fine-grain: Using parallel do loops.

norm = 0.d0
!$omp parallel do reduction(+ : norm)
do i=1,n

norm = norm + abs(x(i))
enddo

!$omp parallel do
do i=1,n

x(i) = x(i) / norm
enddo

Note: Must finish computing norm before using for any x(i),
so we are using the implicit barrier after the first loop.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Example: Normalizing a vector

Another fine-grain approach, forking threads only once:

! from $CLASSHG/codes/openmp/normalize1.f90
norm = 0.d0
!$omp parallel private(i)

!$omp do reduction(+ : norm)
do i=1,n

norm = norm + abs(x(i))
enddo

!$omp barrier ! not needed (implicit)

!$omp do
do i=1,n

x(i) = x(i) / norm
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Example: Normalizing a vector

Compute the normalized vector x/‖x‖1, with ‖x‖1 =
∑n

i=1 |xi|

Coarse grain version:

Assign blocks of i values to each thread. Threads must:

• Compute thread’s contribution to ‖x‖1,

norm_thread =
iend∑
istart

|xi|,

• Collaborate to compute total value ‖x‖1:

‖x‖1 =
∑

threads

norm_thread

• Loop over i = istart, iend to divide xi by ‖x‖1.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Example: Normalizing a vector

! from $CLASSHG/codes/openmp/normalize2.f90

norm = 0.d0
!$omp parallel private(i,norm_thread, &
!$omp istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

norm_thread = 0.d0
do i=istart,iend

norm_thread = norm_thread + abs(x(i))
enddo

! update global norm with value from each thread:
!$omp critical
norm = norm + norm_thread

!$omp end critical

!$omp barrier !! needed here

do i=istart,iend
y(i) = x(i) / norm
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

Normalizing a vector — possible bugs

1. Not declaring proper variables private

2. Setting norm = 0.d0 inside parallel block.

Ok if it’s in a omp single block. Otherwise second thread
might set to zero after first thread has updated by
norm_thread.

3. Not using omp critical block to update global norm.

Data race.

4. Not having a barrier between updating norm and using it.

First thread may use norm before other threads have added
their contributions.

None of these bugs would give compile or run-time errors!
Just wrong results (sometimes).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

Solve u′
i(t) = ciui(t) for t ≥ 0

with initial condition ui(0) = ηi.

Exact solution: ui(t) = ecitηi.

Euler method: ui(t+ ∆t) ≈ ui(t) + ∆tciui(t) = (1 + ci∆t)ui(t).

New wrinkle: Stop time stepping when any of the ui(t) values
exceeds 100.

(Will certainly happen as long as cj > 0 for some j.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

Stop time stepping when any of the ui(t) values exceeds 100.

Idea:

Each time step, compute umax = maximum value of ui over
all i and exit the time-stepping if umax > 100.

Each thread has a private variable umax_thread for the
maximum value of ui for its values of i. Updated for each i.

Each thread updates shared umax based on its umax_thread.
This needs to be done in critical section.

Also need two barriers to make sure all threads are in synch at
certain points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

!$omp parallel private(i,m,umax_thread, &
!$omp istart,iend,thread_num)
!$ thread_num = omp_get_thread_num()
istart = thread_num * points_per_thread + 1
iend = min((thread_num+1) * points_per_thread, n)

do m=1,nsteps
umax_thread = 0.d0
!$omp single

umax = 0.d0
!$omp end single
do i=istart,iend

u(i) = (1.d0 + c(i)*dt) * u(i)
umax_thread = max(umax_thread, u(i))
enddo

!$omp critical
umax = max(umax, umax_thread)

!$omp end critical
!$omp barrier

if (umax > 100) exit
!$omp barrier
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

If there were no barriers, following could happen:
Thread 0 executes critical section first, setting umax to 90.
Thread 0 checks if umax > 100. False, starts next iteration.
Thread 1 executes critical section, updating umax to 110.
Thread 1 checks if umax > 100. True, so it exits.

Thread 0 might never reach umax > 100. Runs forever.

With only first barrier, following could happen:
umax < 100 in iteration m.
Thread 0 checks if umax > 100. Go to iteration m+ 1.
Thread 0 does iteration on i and sets umax > 100,

Stops at first barrier.
Thread 1 (iteration m) checks if umax > 100. True, Exits.

Thread 1 never reaches first barrier again, code hangs.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

OpenMP example with shared exit criterion

If there were no barriers, following could happen:
Thread 0 executes critical section first, setting umax to 90.
Thread 0 checks if umax > 100. False, starts next iteration.
Thread 1 executes critical section, updating umax to 110.
Thread 1 checks if umax > 100. True, so it exits.

Thread 0 might never reach umax > 100. Runs forever.

With only first barrier, following could happen:
umax < 100 in iteration m.
Thread 0 checks if umax > 100. Go to iteration m+ 1.
Thread 0 does iteration on i and sets umax > 100,

Stops at first barrier.
Thread 1 (iteration m) checks if umax > 100. True, Exits.

Thread 1 never reaches first barrier again, code hangs.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 16, May 2, 2011

	Lecture 16
	OpenMP

