AMath 483/583 — Lecture 15 — April 29, 2011

Today:
e OpenMP
e Fine grain vs. coarse grain parallelism

Next week:
o lterative methods for linear systems
e Adaptive quadrature
e Start MPI

Read: Class notes and references

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Dependencies in loops

do i=1,n
z (i) = x(i) + y (i)
cos (z (1))

w (1)
enddo

There is a data dependence between the two statements in this
loop.

The value w (i) cannot be computed before z (i) .

However, this could be paralellized with a parallel do since the
same thread will always execute both statements in the right
order for each i.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Matrix-matrix multiplication

!'Somp parallel do private (i, k)
do j=1,n
do i=1,n
c(i,j) = 0.d0
do k=1,n
c(i,J) = c(i,3) + a(i,k)*b(k,3)
enddo
enddo
enddo

This works since c (i, j) is only modified by thread handling
column 5.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Loop-Carried Dependencies

do i=2,n
x(1) = x(i-1)
enddo

There is a loop-carried data dependence in this loop.

The assignment for i=3 must not be done before i=2 or it may
get the wrong value.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Loop-Carried Dependencies

Example: Solve ODE

with Euler’'s method y(t + At) = y(t) + Aty (¢):

y(1l) = 1.d0

dt = ... ! time step

do i=2,n
y(i) = y(i-1) + dt*2.d0*y(i-1)
enddo

Cannot easily parallelize.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Loop-Carried Dependencies

y = 0.d0

do 1=1,10
if (i==3) y = 1.d0
x(1) =y
enddo

There is a loop-carried data dependence in this loop.
In serial execution, only first two elements of x are 0.d0.

With parallel do, laterindex (e.g. i=5) may be executed
before i=3.

R.J. LeVeque, University of Washington

Notes:

AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011



Thread-safe functions Notes:
Consider this code:
!'Somp parallel do
do i=1,n
y (i) = myfen(x(1))
enddo
Does this give the same results as the serial version?
Maybe not... it depends on what the function does!
If this gives the same results regards of the order threads call
for different values of i, then the function is thread safe.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Thread-safe functions Notes:
A thread-safe function:
function myfcn (x)
real (kind=8), intent (in) :: x
real (kind=8), intent (out) :: myfcn
real (kind=8) z ! local variable
z = exp(x)
myfcn = zxcos(x)
end function myfcn
Executing this function for one value of x is completely
independent of execution for other values of x.
Note that each call creates a new local value z on the call
stack, so z is private to the thread executing the function.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Non-Thread-safe functions Notes:

Suppose z, count are global variables defined in module
globals.£90.

Then this function is not thread-safe:

function myfcn (x)

real (kind=8), intent (in) :: x

real (kind=8), intent (out) :: myfcn
use globals

count = count+l ! counts times called
z = exp(x)

myfcn = zxcos(x) + count

end function myfcn
The value of count seen when calling y (i) = myfcn(x(i))
will depend on the order of execution of different values of 1.

Moreover,z might be modified by another thread between when
it is computed and when it is used.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Aside on global variables in Fortran Notes:
module globals
implicit none
save
integer :: count
real (kind=8) :: =z
end module globals
The save command says that values of these variables should
be saved from one use to the next.
Fortran 77 and before: Instead used common blocks:
common /globals/ z,count
can be included in any file where z and count should be
available. (Also not thread safe!)
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Non-Thread-safe functions Notes:
Beware of input or output...
Suppose unit 20 has been opened for reading in the main
program, value on line i should be used in calculating y (1) ...
This function is not thread-safe:
function myfcn (x)
real (kind=8), intent (in) :: x
real (kind=8), intent (out) :: myfcn
real (kind=8) z
read (20, *) z
myfcn = z*cos (x)
end function myfcn
Will work in serial mode but if threads execute in different order,
will give wrong results.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Pure subroutines and functions Notes:

A subroutine can be declared pure if it:
e Does not alter global variables,
e Does not do I/O,
e Does not declare local variables with the save attribute,
suchas real, save :: =z
e For functions, does not alter any input arguments.

Example:

pure subroutine f (x,Vy)
implicit none
real (kind=8), intent (in) :: x
real (kind=8), intent (inout) :: y
y = X**%2 + y

end subroutine f

Good idea even for sequential codes: Allows some compiler
optimizations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Forall statement Notes:
In place of
do i=1,n
x (1) = 2.d0*1i
end do
can write
forall (i=1:n)
x (1) = 2.d0*1i
end forall
Tells compiler that the statements can execute in any order.
Also may lead to compiler optimization even on serial computer.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Forall statement Notes:
Nested loops can be written with forall:
forall (i=1l:n, j=1:n)
a(i,j) = 2.d0xixj
end forall
Can include masks:
forall (i=1:n, j=1:n, b (i, J) .ne.0.d0)
a(i,j) = 1.d0 / b(i,J)
end forall
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
OpenMP — beyond parallel loops Notes:

The directive ! Somp parallel is used to create a number of
threads that will each execute the same code...

!Somp parallel
! some code
!'Somp end parallel

The code will be executed nthreads times.
SPMD: Single program, multiple data
Terminology note:

SIMD: Single instruction, multiple data

refers to hardware (vector machines) that apply same
arithmetic operation to a vector of values in lock-step.
SPMD is a software term — need not be in lock step.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




OpenMP parallel with do loops

Note: This code...

!Somp parallel
do i=1,10
print x, "i
enddo
!'Somp end parallel

Il
~
i

The entire do loop (i=1,2,...,10) will be executed by each thread!
With 2 threads, 20 lines will be printed.

... is not the same as:
!'Somp parallel do
do i=1,10
print =, "i = ",1i
enddo
!'Somp end parallel do

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

OpenMP parallel with do loops

!'Somp parallel do
do i=1,10
print =, "i = ",1i
enddo
!'Somp end parallel do

is shorthand for:

!'Somp parallel
!'Somp do
do 1i=1,10
print %, "i = ",1i
enddo
!'Somp end do
!'Somp end parallel

More generally, if ! Somp do is inside a parallel block, then the
loop is split between threads rather than done in total by each

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

OpenMP parallel with do loops
The ! Somp do directive is useful for...

!'Somp parallel

! some code executed by every thread

'Somp do

do i=1,n
! loop to be split between threads
enddo

!'Somp end do

! more code executed by every thread

!'Somp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Some other useful directives...

Execution of part of code by a single thread:

!'Somp parallel
! some code executed by every thread

!'Somp single
! code executed by only one thread
!'Somp end single

!Somp end parallel

Can also use ! $omp master to force execution by master
thread.

Example: Initializing or printing out a shared variable.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Some other useful directives... Notes:
barriers:
!Somp parallel
! some code executed by every thread
!'Somp barrier
! some code executed by every thread
!'Somp end parallel
Every thread will stop at barrier until all threads have reached
this point.
Make sure all threads reach barrier or code will hang!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011
Some other useful directives... Notes:

Sections:

!'Somp parallel
!'Somp sections

!Somp section
! code executed by only one thread

!'Somp section
! code executed by a different thread

!'Somp end sections

!'Somp end parallel

Example: Read in two large data files simultaneously.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Fine vs. coarse grain parallelism

Fine grain: Parallelize at the level of individual loops, splitting
work for each loop between threads.

Coarse grain: Split problem up into large pieces and have each

thread deal with one piece.

May need to synchronize or share information at some points.

Domain Decomposition: Splitting up a problem on a large
domain (e.g. three-dimensional grid) into pieces that are
handled separated (with suitable coupling).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Solution of independent ODEs by Euler's method Notes:

Solve u}(t) = cju;(t) fort >0

with initial condition u;(0) = ;.

Exact solution: u;(t) = en;.

Euler method: u;(t + At) = u;(t) + Atciui(t) = (1 + ¢;At)u,(1).

Implement this for large number of time steps for

i=1, 2, ..., nwith n large too.

This problem is embarassingly parallel: Problem for each i is

completely decoupled from problem for any other i. Could solve

them all simultaneously with no communication needed.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011 R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Fine grain solution with parallel do loops Notes:

!'Somp parallel do
do i=1,n
u(i) = eta(i)
enddo

do m=1,nsteps
!Somp parallel do
do i=1,n
u(i) = (1.d0 + dtxc(i))*u(i)
enddo
enddo

Note that threads are forked nsteps+1 times.

Requires shared memory:
don’t know which thread will handle each i.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




Coarse grain solution of ODEs

Splitupi =1, 2, ..., ninto nthreads disjoint sets.
A set goes from i=istart to i=iend
These private values are different for each thread.

Each thread handles 1 set for the entire problem.

!Somp parallel private(istart,iend,i,m)

istart = ??
iend = ??

do i=istart, iend
u(i) = eta(i)
enddo

do m=1,nsteps
do i=istart,iend
u(i) = (1.d0 + dt*c (1)) *u(i)
enddo
enddo
!'Somp end parallel

Threads are forked only once,
Each thread only needs subset of data.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Setting istart and iend

Example: If n=100 and nthreads = 2, we would want:
Thread 0: istart= 1 and iend= 50,
Thread 1: istart=51 and iend=100.

If nthreads divides n evenly...

points_per_thread = n / nthreads
!Somp parallel private (thread_num, istart, iend, 1)

thread_num = 0 ! needed in serial mode
!'$ thread_num = omp_get_thread_num/()

istart = thread_num * points_per_thread + 1
iend = (thread_num+l) x points_per_thread

do i=istart, iend

! work on thread’s part of array
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011

Setting istart and iend more generally

Example: If n=101 and nthreads = 2, we would want:

Thread 0: istart= 1 and iend= 51,
Thread 1: istart=52 and iend=101.

If nthreads might not divide n evenly...

points_per_thread = (n + nthreads - 1) / nthreads
!Somp parallel private (thread_num, istart, iend, 1)

thread_num = 0 ! needed in serial mode
!'$ thread_num = omp_get_thread_num/()

istart = thread_num x points_per_thread + 1
iend = min((thread_num+l) % points_per_thread, n)

do i=istart, iend

! work on thread’s part of array
enddo

!$omp end parallel

R.J. LeVeque, University of Washington AMath 483/583, Lecture 15, April 29, 2011

Notes:

R.J. LeVeque, University of Washington

AMath 483/583, Lecture 15, April 29, 2011




