
AMath 483/583 — Lecture 11 — April 20, 2011

Today:
• Debugging Fortran
• Software packages
• zeroin for finding zeros of a function
• LAPACK and BLAS

Friday:
• Parallel computing concepts

Read: Class notes and references
There are several new sections!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Optimizing Fortran

See the examples at

$CLASSHG/codes/fortran/optimize.

$CLASSHG/codes/particles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Developing programs to minimize bugs

• Start simple and add features slowly
Tackle stripped-down version of problem first

• Modularize: break problem into pieces
Subroutines or functions with

well-defined inputs and outputs
Develop and debug separately first

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Developing programs to minimize bugs

Unit tests: Test small pieces (early and often)

• Python has a unittest module to assist,

• Allows specification of test cases, test suites.

Regression testing:

Test that adding a new feature (or fixing a bug)
didn’t break old features.

Keep sample programs that test various features of the code,
Run these after making improvements or “fixing” a bug.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Debugging in Fortran

Need to compile with -g flag, no optimization.

(Runs slower, so recompile once debugged.)

gdb — command line debugger similar to pdb.

ddd — GUI front end for gdb, can be obtained on VM via:

$ sudo apt-get install ddd

Eclipse — IDE that uses gdb.

Much better commercial debuggers available, e.g. totalview.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Debugging Fortran

See the examples at

$CLASSHG/codes/fortran/debug.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Segmentation faults

Sometimes running a program gives:

$./a.out
Segmentation Fault

This generally means the code tried to write to a part of
memory where it didn’t have permission.

Or:

$./a.out
Bus error

This generally means a bad address not even in memory.

Often these are a result of an array index out of bounds.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Segmentation faults

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 20.d0
print *, "i = ",i
print *, x(i)
enddo

produces:

...
i = 10
20.0000000000000

i = 1077149696
Segmentation fault

Why? x(11) points to memory where i is stored!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Overwriting variables

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 0.d0
print *, "i = ",i
print *, x(i)
enddo

Goes into an infinite loop — i gets reset to 0.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Array bounds checking

$ gfortran -fbounds-check run1.f90

Gives:

...
i = 10
20.0000000000000

Fortran runtime error: Array reference out of bounds
for array ’x’, upper bound of dimension 1 exceeded
(in file ’demo1.f90’, at line 11)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Mathematical Software

It is best to use high-quality software as much as possible,
for several reasons:

• It will take less time to figure out how to use the software
than to write your own version. (Assuming it’s well
documented!)

• Good general software has been extensively tested on a
wide variety of problems.

• Often general software is much more sophisticated that
what you might write yourself, for example it may provide
error estimates automatically, or it may be optimized to run
fast.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Software sources

• Netlib: http://www.netlib.org

• NIST Guide to Available Mathematical Software:
http://gams.nist.gov/

• Trilinos: http://trilinos.sandia.gov/

• DOE ACTS: http://acts.nersc.gov/

• PETSc nonlinear solvers:
http://www.mcs.anl.gov/petsc/petsc-as/

• Many others!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Function zeroin from Netlib

The code in $CLASSHG/codes/fortran/zeroin illustrate
how to use the function zeroin obtained from the Golden Oldies
(go) directory of Netlib.

See: http://www.netlib.org/go/index.html

c ===
function zeroin(ax,bx,f,tol)

c ===
implicit double precision (a-h,o-z)
external f

Note: Fortran 77 style!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

The BLAS

Basic Linear Algebra Subroutines

Core routines used by LAPACK (Linear Algebra Package)
and elsewhere.

Generally optimized for particular machine architectures, cache
hierarchy.

Can create optimized BLAS using
ATLAS (Automatically Tuned Linear Algebra Software)

See notes and http://www.netlib.org/blas/faq.html

• Level 1: Scalar and vector operations
• Level 2: Matrix-vector operations
• Level 3: Matrix-matrix operations

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

The BLAS

Subroutine names start with:
• S: single precision
• D: double precision
• C: single precision complex
• Z: double precision complex

Examples:
• DDOT: dot product of two vectors
• DGEMV: matrix-vector multiply, general matrices
• DGEMM: matrix-matrix multiply, general matrices
• DSYMM: matrix-matrix multiply, symmetric matrices

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

LAPACK

Many routines for linear algebra.

Typical name: XYYZZZ

X is precision

YY is type of matrix, e.g. GE (general), BD (bidiagonal),

ZZZ is type of operation, e.g. SV (solve system),
EV (eigenvalues, vectors), SVD (singular values, vectors)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Installing LAPACK

On Virtual Machine or other Debian or Ubuntu Linux:

$ sudo apt-get install liblapack-dev

This will include BLAS (but not optimized for your system).

Alternatively can download tar files and compile.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Using libraries

If program.f90 uses BLAS routines...

$ gfortran -c program.f90
$ gfortran -lblas program.o

or can combine as

$ gfortran -lblas program.f90

When linking together .o files, will look for a file called
libblas.a (probably in /usr/lib).

This is a archived static library.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Making blas library

Download http://www.netlib.org/blas/blas.tgz.

Put this in desired location, e.g. $HOME/lapack/blas.tgz

$ cd $HOME/lapack
$ tar -zxf blas.tgz # creates BLAS subdirectory
$ cd BLAS
$ gfortran -O3 -c *.f
$ ar cr libblas.a *.o # creates libblas.a

To use this library:

$ gfortran -lblas -L$HOME/lapack/BLAS \
program.f90

Note: Non-optimized Fortran 77 versions.

Better approach would be to use ATLAS.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Creating LAPACK library

Can be done from source at
http://www.netlib.org/lapack/

but somewhat more difficult.

Individual routines and dependencies can be obtained from
e.g.:

http://www.netlib.org/lapack/double

Download .tgz file and untar into directory where you want to
use them, or make a library of just these files.

Some routines are in
$CLASSHG/codes/lapack/lapack-subset.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Memory management for arrays

Often a program needs to be written to handle arrays whose
size is not known until the program is running.

Fortran 77 approaches:
• Allocate arrays large enough for any application,
• Use “work arrays” that are partitioned into pieces.

We will look at some examples from LAPACK since you will
probably see this in other software!

The good news:

Fortran 90 allows dynamic memory allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

DGESV — Solves a general linear system

http://www.netlib.org/lapack/double/dgesv.f

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV,
$ B, LDB, INFO)

N = size of system (square)

A = matrix on input, L,U factors on output,
dimension(LDA,N)

LDA = leading dimension of A
(number of columns in declaration of A)

real(kind=8) dimension(100,500) :: a
! fill a(1:20, 1:20) with 20x20 matrix
n = 20
lda = 100

Need this to index into a(i,j) = (j-1)*lda + i
(stored by columns)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

DGESV — Solves a general linear system

SUBROUTINE DGESV(N, NRHS, A, LDA, IPIV,
$ B, LDB, INFO)

NRHS = number of right hand sides

IPIV = Returns pivot vector (permutation of rows)
integer, dimension(N)
Row I was interchanged with row IPIV(I).

B = matrix whose columns are right hand side(s) on input
solution vector(s) on output.

LDB = leading dimension of B.

INFO = integer returning 0 if successful.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Gaussian elimination as factorization

If A is nonsingular it can be factored as

PA = LU

where

P is a permutation matrix (rows of identity permuted),

L is lower triangular with 1’s on diagonal,

U is upper triangular.

After returning from dgesv:
A contains L and U (without the diagonal of L),
IPIV gives ordering of rows in P .

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Gaussian elimination as factorization

Example:

A =




2 1 3
4 3 6
2 3 4







0 1 0
0 0 1
1 0 0







2 1 3
4 3 6
2 3 4


 =




1 0 0
1/2 1 0
1/2 −1/3 1







4 3 6
0 1.5 1
0 0 1/3




IPIV = (2,3,1)

and A ends up as



4 3 6
1/2 1.5 1
1/2 −1/3 1/3




R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

dgesv examples

See $CLASSHG/codes/lapack/random.

randomsys1.f90 is with static array allocation.

randomsys2.f90 is with dynamic array allocation.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

Notes:

R.J. LeVeque, University of Washington AMath 483/583, Lecture 11, April 20, 2011

