
AMath 483/583 — Lecture 10 — April 18, 2011

Today:
• Cache considerations
• Optimizing Fortran codes
• Debugging Fortran

Wednesday:
• Software packages
• LAPACK and BLAS

Read: Class notes and references
There are several new sections!

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Code optimization

We will look at some basics worth keeping in mind.

However:
• Also important to consider programmer time.

• Writing readable code is very important in getting program
correct.

• Some optimizations not worth spending time on.

• Often best to first get code working properly and then
determine whether optimization is necessary.
“Premature optimization is the root of all evil” (Don Knuth)

• If so, determine which parts of code need to be improved
and spend effort on these sections.

• Use optimized software such as BLAS, LAPACK.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Memory Hierachy

Between registers and memory there are 2 or 3 levels of cache,
each larger but slower.

Registers: access time 1 cycle

L1 cache: a few cycles

L2 cache: ∼ 10 cycles

(Main) Memory: ∼ 250 cycles

Hard drive: 1000s of cycles

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Array ordering — which loop is faster?

integer, parameter :: m = 4097, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 0.72 seconds, Second: 0.19 seconds
R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Much worse if m is high power of 2

integer, parameter :: m = 4096, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 2.4 seconds, Second: 0.19 seconds
R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

More about cache

Simplied model of one level direct mapped cache.

32-bit memory address: 4.3× 109 addresses

Suppose cache holds 512 = 29 cache lines (9-bit address)

A given memory location cannot go anywhere in cache.
9 low order bits of memory address determine cache address.

For a memory fetch:
• Determine cache address, check if this holds desired

words from memory.
• If so, use it.
• If not, check “dirty bit” to see if has been modified since

load.
• If so, write to memory before loading new cache line.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Cache collisions

Return to example where matrix has 4096 = 212 rows.

Cache line holds 64 bytes = 8 floats. 4096/8 = 512 cache lines
per column of matrix.

Loading one column of matrix will fill up cache lines
0, 1, 2, . . . , 511.

Second column will go back to cache line 0.
But all elements in cache have been used before this happens,

Prefetching can be done by optimizing compiler.

Worse — Going across the rows:

The first 8 elements of column 1 go to cache line 0.

The first 8 elements of column 2 also map to cache line 0.

Similarly for all columns. The rest of cache stays empty.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

More about cache

If cache holds more lines:

1024 lines =⇒
first 8 bytes of column 1 go to cache line 0,
first 8 bytes of column 2 go to cache line 512,
first 8 bytes of column 3 go to cache line 0,
first 8 bytes of column 4 go to cache line 512.

Still only using 1/512 of cache.

In practice cache is often set associative: small number of
cache addresses for each memory address.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Padding

Matrix dimensions that are high powers of 2 should usually be
avoided.

Even though natural for some algorithms such as FFTs

May be worth declaring larger arrays and only using part of it.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Matrix transpose

do j=1,n
do i=1,n

b(j,i) = a(i,j)
enddo

enddo

Accessing a by column but b by row!

Better to do by blocks — illustrate on board.

See also: Bill Gropp’s class at Illinois, Lecture 2

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Matrix transpose

Suppose stride s divides n. Then can rewrite as:

Strip mining:

do jj=1,n,s
do j=jj,jj+s-1

do ii=1,n,s
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loop reordering:

do jj=1,n,s
do ii=1,n,s

do j=jj,jj+s-1
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loops over blocks in outer loops, within block in inner loops.
R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Block matrix multiply

Compute C = AB. Can partition into blocks:
[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

where
Cij = Ai1B1j + Ai2B2j

When blocks A11 and B11 are in cache can compute the A11B11

part of C11 = A11B11 + A12B21

Might next bring in B12 and compute the A11B12 part of
C12 = A11B12 + A12B22

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Flop rate for matrix multiply/add

a, b each 1000× 1000 matrices.

Compare time of c = matmul(a,b) vs. c = a+b.

Compare megaflops per second: 1e-6*nflops/(t2-t1).

Add: CPU time (sec): 0.00687200
rate: 145.52 megaflops/sec

Multiply: CPU time (sec): 2.38393500 slower
rate: 838.53 megaflops/sec higher

For addition: nflops = n**2
For multiplication: nflops = (2n-1)*n**2,

More flops, but each element is used n times,
=⇒ More flops per memory access =⇒ higher rate.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Optimizing Fortran

See the examples at

$CLASSHG/codes/fortran/optimize.

$CLASSHG/codes/particles.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Developing programs to minimize bugs

• Start simple and add features slowly
Tackle stripped-down version of problem first

• Modularize: break problem into pieces
Subroutines or functions with

well-defined inputs and outputs
Develop and debug separately first

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Developing programs to minimize bugs

Unit tests: Test small pieces (early and often)

• Python has a unittest module to assist,

• Allows specification of test cases, test suites.

Regression testing:

Test that adding a new feature (or fixing a bug)
didn’t break old features.

Keep sample programs that test various features of the code,
Run these after making improvements or “fixing” a bug.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Debugging in Fortran

Need to compile with -g flag, no optimization.

(Runs slower, so recompile once debugged.)

gdb — command line debugger similar to pdb.

ddd — GUI front end for gdb, can be obtained on VM via:

$ sudo apt-get install ddd

Eclipse — IDE that uses gdb.

Much better commercial debuggers available, e.g. totalview.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Debugging Fortran

See the examples at

$CLASSHG/codes/fortran/debug.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Segmentation faults

Sometimes running a program gives:

$./a.out
Segmentation Fault

This generally means the code tried to write to a part of
memory where it didn’t have permission.

Or:

$./a.out
Bus error

This generally means a bad address not even in memory.

Often these are a result of an array index out of bounds.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Segmentation faults

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 20.d0
print *, "i = ",i
print *, x(i)
enddo

produces:

...
i = 10

20.0000000000000
i = 1077149696

Segmentation fault

Why? x(11) points to memory where i is stored!
R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Overwriting variables

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 0.d0
print *, "i = ",i
print *, x(i)
enddo

Goes into an infinite loop — i gets reset to 0.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

Array bounds checking

$ gfortran -fbounds-check run1.f90

Gives:

...
i = 10

20.0000000000000
Fortran runtime error: Array reference out of bounds
for array ’x’, upper bound of dimension 1 exceeded
(in file ’demo1.f90’, at line 11)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 10, April 18, 2011

