
AMath 483/583 — Lecture 10 — April 18, 2011

Today:
• Cache considerations
• Optimizing Fortran codes
• Debugging Fortran

Wednesday:
• Software packages
• LAPACK and BLAS

Read: Class notes and references
There are several new sections!
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Code optimization

We will look at some basics worth keeping in mind.

However:
• Also important to consider programmer time.

• Writing readable code is very important in getting program
correct.

• Some optimizations not worth spending time on.

• Often best to first get code working properly and then
determine whether optimization is necessary.
“Premature optimization is the root of all evil” (Don Knuth)

• If so, determine which parts of code need to be improved
and spend effort on these sections.

• Use optimized software such as BLAS, LAPACK.
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Memory Hierachy

Between registers and memory there are 2 or 3 levels of cache,
each larger but slower.

Registers: access time 1 cycle

L1 cache: a few cycles

L2 cache: ∼ 10 cycles

(Main) Memory: ∼ 250 cycles

Hard drive: 1000s of cycles
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Array ordering — which loop is faster?

integer, parameter :: m = 4097, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 0.72 seconds, Second: 0.19 seconds
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Much worse if m is high power of 2

integer, parameter :: m = 4096, n = 10000
real(kind=8), dimension(m,n) :: a

do i = 1,m
do j=1,n

a(i,j) = 0.d0
enddo

enddo

do j = 1,n
do i=1,m

a(i,j) = 0.d0
enddo

enddo

First: 2.4 seconds, Second: 0.19 seconds
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More about cache

Simplied model of one level direct mapped cache.

32-bit memory address: 4.3× 109 addresses

Suppose cache holds 512 = 29 cache lines (9-bit address)

A given memory location cannot go anywhere in cache.
9 low order bits of memory address determine cache address.

For a memory fetch:
• Determine cache address, check if this holds desired

words from memory.
• If so, use it.
• If not, check “dirty bit” to see if has been modified since

load.
• If so, write to memory before loading new cache line.
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Cache collisions

Return to example where matrix has 4096 = 212 rows.

Cache line holds 64 bytes = 8 floats. 4096/8 = 512 cache lines
per column of matrix.

Loading one column of matrix will fill up cache lines
0, 1, 2, . . . , 511.

Second column will go back to cache line 0.
But all elements in cache have been used before this happens,

Prefetching can be done by optimizing compiler.

Worse — Going across the rows:

The first 8 elements of column 1 go to cache line 0.

The first 8 elements of column 2 also map to cache line 0.

Similarly for all columns. The rest of cache stays empty.
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More about cache

If cache holds more lines:

1024 lines =⇒
first 8 bytes of column 1 go to cache line 0,
first 8 bytes of column 2 go to cache line 512,
first 8 bytes of column 3 go to cache line 0,
first 8 bytes of column 4 go to cache line 512.

Still only using 1/512 of cache.

In practice cache is often set associative: small number of
cache addresses for each memory address.
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Padding

Matrix dimensions that are high powers of 2 should usually be
avoided.

Even though natural for some algorithms such as FFTs

May be worth declaring larger arrays and only using part of it.
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Matrix transpose

do j=1,n
do i=1,n

b(j,i) = a(i,j)
enddo

enddo

Accessing a by column but b by row!

Better to do by blocks — illustrate on board.

See also: Bill Gropp’s class at Illinois, Lecture 2
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Matrix transpose

Suppose stride s divides n. Then can rewrite as:

Strip mining:

do jj=1,n,s
do j=jj,jj+s-1

do ii=1,n,s
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loop reordering:

do jj=1,n,s
do ii=1,n,s

do j=jj,jj+s-1
do i=ii,ii+s-1

b(j,i) = a(i,j)

Loops over blocks in outer loops, within block in inner loops.
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Block matrix multiply

Compute C = AB. Can partition into blocks:
[

C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

] [
B11 B12

B21 B22

]

where
Cij = Ai1B1j + Ai2B2j

When blocks A11 and B11 are in cache can compute the A11B11

part of C11 = A11B11 + A12B21

Might next bring in B12 and compute the A11B12 part of
C12 = A11B12 + A12B22
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Flop rate for matrix multiply/add

a, b each 1000× 1000 matrices.

Compare time of c = matmul(a,b) vs. c = a+b.

Compare megaflops per second: 1e-6*nflops/(t2-t1).

Add: CPU time (sec): 0.00687200
rate: 145.52 megaflops/sec

Multiply: CPU time (sec): 2.38393500 slower
rate: 838.53 megaflops/sec higher

For addition: nflops = n**2
For multiplication: nflops = (2n-1)*n**2,

More flops, but each element is used n times,
=⇒ More flops per memory access =⇒ higher rate.
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Optimizing Fortran

See the examples at

$CLASSHG/codes/fortran/optimize.

$CLASSHG/codes/particles.
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Developing programs to minimize bugs

• Start simple and add features slowly
Tackle stripped-down version of problem first

• Modularize: break problem into pieces
Subroutines or functions with

well-defined inputs and outputs
Develop and debug separately first
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Developing programs to minimize bugs

Unit tests: Test small pieces (early and often)

• Python has a unittest module to assist,

• Allows specification of test cases, test suites.

Regression testing:

Test that adding a new feature (or fixing a bug)
didn’t break old features.

Keep sample programs that test various features of the code,
Run these after making improvements or “fixing” a bug.
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Debugging in Fortran

Need to compile with -g flag, no optimization.

(Runs slower, so recompile once debugged.)

gdb — command line debugger similar to pdb.

ddd — GUI front end for gdb, can be obtained on VM via:

$ sudo apt-get install ddd

Eclipse — IDE that uses gdb.

Much better commercial debuggers available, e.g. totalview.
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Debugging Fortran

See the examples at

$CLASSHG/codes/fortran/debug.
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Segmentation faults

Sometimes running a program gives:

$ ./a.out
Segmentation Fault

This generally means the code tried to write to a part of
memory where it didn’t have permission.

Or:

$ ./a.out
Bus error

This generally means a bad address not even in memory.

Often these are a result of an array index out of bounds.
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Segmentation faults

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 20.d0
print *, "i = ",i
print *, x(i)
enddo

produces:

...
i = 10

20.0000000000000
i = 1077149696

Segmentation fault

Why? x(11) points to memory where i is stored!
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Overwriting variables

integer :: i
real(kind=8), dimension(10) :: x

do i=1,15
x(i) = 0.d0
print *, "i = ",i
print *, x(i)
enddo

Goes into an infinite loop — i gets reset to 0.
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Array bounds checking

$ gfortran -fbounds-check run1.f90

Gives:

...
i = 10

20.0000000000000
Fortran runtime error: Array reference out of bounds
for array ’x’, upper bound of dimension 1 exceeded
(in file ’demo1.f90’, at line 11)
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