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Outline of today’s lecture

• Goals of this course, strategy for getting there

• Mechanics of homeworks

• Computer/software requirements

• Brief overview of computational science and challenges
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Overview

High Performance Computing (HPC) generally means
heavy-duty computing on clusters or supercomputers with 100s
to million(s) of cores.

Our focus is more modest, but we will cover much background
material that is:
• Essential to know if you eventually want to do HPC
• Extremely useful for any scientific computing project, even

on a laptop.

Focus on scientific computing as opposed to other
computationally demanding domains, for which somewhat
different tools might be best.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011



Focus and Topics

Efficiently using single processor and multi-core computers

• Basic computer architecture, e.g. floating point arithmetic,
cache hierarchies, pipelining

• Using Unix (or Linux, Mac OS X)
• Language issues, e.g. compiled vs. interpreted,

object oriented, etc.
• Specific languages: Python, Fortran 90/95
• Parallel computing with OpenMP, MPI, IPython

Efficient programming as well as minimizing run time
• Version control: Mercurial (hg),
• Makefiles, Python scripting,
• Debuggers
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Strategy

So much material, so little time....

• Concentrate on basics, simple motivating examples.

• Get enough hands-on experience to be comfortable
experimenting further and learning much more on your
own.

• Learn what’s out there to help select what’s best for your
needs.

• Teach many things “by example” as we go along.
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Lecture notes

• html and pdf versions at (green = link in pdf file)
http://www.amath.washington.edu/~rjl/am583

• Written using Sphinx: Python-based system for writing
documentation. Learn by example!!

• Source for each file can be seen by clicking on “Show
Source” on right-hand menu.

• Source files are in class hg repository. You can clone the
repository and run Sphinx yourself to make a local version.

$ hg clone http://bitbucket.org/.../uwamath583s11
$ cd uwamath583s11/sphinx
$ make html
$ firefox _build/html/index.html
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Lecture slides

Slides from lectures will be linked from the Slides section of the
class notes.

Generally in 3 forms, including one with space for taking notes.

With luck they will be posted at least 2 hours before class if you
want to print and bring along.

Note: Slides will contain things not in the notes, lectures will
also include hands-on demos not on the slides.
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Prerequisites

Some programming experience in some language,
e.g., Matlab, C, Java.

You should be comfortable:
• editing a file containing a program and executing it,
• using basic structures like loops, if-then-else, input-output,
• writing subroutines or functions in some language

You are not expected to know Python or Fortran.

Some basic knowledge of linear algebra, e.g.:
• what vectors and matrices are and how to multiply them
• How to go about solving a linear system of equations

Some comfort level for learning new sofware and willingness to
dive in to lots of new things.
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Homeworks

There will be 6 homeworks, plus a take-home final “exam”.

Electronic submission: via Mercurial (in order to get experience
using Mercurial!)

Homework assignments will be in the notes.

Main goal: introduce many topics and get some hands-on
experience with each.
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Homework #1

Homework #1 is in the notes.

Tasks:
• Make sure you have a computer that you can use with

• Unix (e.g. Linux of Mac OSX),
• Python 2.5 or higer,
• Mercurial

See next slide.

• Use Mercurial (hg) to clone the class repository and set up
your own repository.

• Copy a Python script from one to the other and run it,
putting the output in a second file.

• Commit these files and push them to your repository for us
to see.
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Computer/Software requirements

You will need access to a computer with a number of things on
it, see the section of the notes on Downloading and Installing
Software.

Note: Unix is often required for scientific computing.

Windows: Many tools we’ll use can be used with Windows, but
learning Unix is part of this class.

Options:
• Install everything you’ll need on your own computer,
• Install VirtualBox and use the Virtual Machine (VM)

created for this class.
• Use a Linux machine in the Applied Mathematics

department (via ssh).
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TA and Office Hours

TA: Grady Lemoine

See the Class Catalyst Page for contact info, updated hours.

Office hours in Guggenheim 406

Monday, Tuesday, Friday 1:30 – 2:30

There is also a Discussion Board on the Class Catalyst Page,
feel free to post (and answer!) questions about getting things
to work.
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Survey

Please take the survey found on the Class Catalyst Page to let
us know about your background and computing plans.

As soon as possible.
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Computational Science (and Engineering)

Often called the third pillar of science, complementing the
traditional pillars of theory and experiment.

Direct numerical simulation of complex physics / biology /
chemistry is possible.

Typically requires solving very large systems of mathematical
equations.
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Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.
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Computational Science and Engineering

A few examples of large scale problems for motivation.

Currently, that often means Tera-scale or Peta-scale.

Next comes Exa-scale.
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How fast are computers?

Kilo = thousand (103)
Mega = million (106)
Giga = billion (109)
Tera = trillion (1012)
Peta = 1015

Exa = 1018

Processor speeds usually measured in Gigahertz these days.

Hertz means “machine cycles per second”.

One operation may take a few cycles.

So a 1 GHz processor can do
> 100, 000, 000 operations per second.

Exascale is a billion times more than Gigascale.
(More speed and/or data.)
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Combustion

Goal: Developing more fuel efficient and cleaner combustion
processes for petroleum and alternative fuels.

Sample computation at Oak Ridge National Laboratory:

Ethylene combustion (simple!)

More than 1 billion grid points,
∆x = ∆y = ∆z =15 microns

4.5 million processor hours on
Jaguar’s 31,000 cores

Generated > 120 terabytes of data

http://www.scidacreview.org/0902/html/news1.html
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Milky Way’s dark matter halo

Goal: Understand nature of the universe.

Sample computation at Oak Ridge National Laboratory:

1.1 billion particles of dark matter,

simulated for 13.7 billion years

> 1 million processor hours on
Jaguar (3000 cores)

http://www.scidacreview.org/0901/html/bt.html
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How long does it take to solve a linear system?

Solving an n× n linear system Ax = b requires ≈ 1
3n3 flops.

(Using Gauss elimination for a dense matrix.)

On a 100 MFlops system:

n flops time
10 3.3× 102 0.0000033 seconds
100 3.3× 105 0.0033 seconds
1000 3.3× 108 3.33 seconds
10000 3.3× 1011 333 seconds = 5.5 minutes
100000 3.3× 1014 333333 seconds = 92.5 hours
1000000 3.3× 1017 92500 hours = 105 years

Assuming data transfer is not a problem!
It is a problem: It’s often the bottleneck, not compute speed!
106 × 106 matrix has 1012 elements =⇒ 8 terabytes.
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Moore’s Law

01/17/2007 CS267-Lecture 1 4

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have 
become smaller, denser, 
and more powerful.

Gordon Moore (co-founder of 
Intel) predicted in 1965 that the 
transistor density of 
semiconductor chips would 
double roughly every 18 
months.

Slide source: Jack Dongarra
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Increasing speed

Moore’s Law: Processor speed doubles every 18 months.
=⇒ factor of 1024 in 15 years.

Going forward: Number of cores doubles every 18 months.

Top: Total computing
power of top 500 com-
puters

Middle: #1 computer

Bottom: #500 computer

http://www.top500.org
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More Limits: How fast can a serial computer be?

• Consider the 1 Tflop/s sequential machine:
- Data must travel some distance, r, to get from memory 

to CPU.
- To get 1 data element per cycle, this means 1012

times per second at the speed of light, c = 3x108 m/s.
Thus r < c/1012 = 0.3 mm.

• Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
- Each bit occupies about 1 square Angstrom, or the 

size of a small atom.
• No choice but parallelism

r = 0.3 
mm

1 Tflop/s, 1 
Tbyte sequential 
machine

Slide Source: Kathy Yellick
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Take away messages

• Massively parallel machines are needed for Petascale or
Exascale (millions or billions of cores).

• But also, all machines going to be multicore soon, with lots
of cores.

• If you want to continue seeing benefiting from hardware
improvements, you need to know something about parallel
computing.
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