
High-Performance Scientific Computing
Instructor: Randy LeVeque

TA: Grady Lemoine

Applied Mathematics 483/583, Spring 2011
http://www.amath.washington.edu/~rjl/am583

“World’s fastest computers”
http://top500.org

Roadrunner (Los Alamos) Jaguar (Oak Ridge)
122,400 cores 224,162 cores

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/am583
http://top500.org

Outline of today’s lecture

• Goals of this course, strategy for getting there

• Mechanics of homeworks

• Computer/software requirements

• Brief overview of computational science and challenges

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Overview

High Performance Computing (HPC) generally means
heavy-duty computing on clusters or supercomputers with 100s
to million(s) of cores.

Our focus is more modest, but we will cover much background
material that is:
• Essential to know if you eventually want to do HPC
• Extremely useful for any scientific computing project, even

on a laptop.

Focus on scientific computing as opposed to other
computationally demanding domains, for which somewhat
different tools might be best.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Focus and Topics

Efficiently using single processor and multi-core computers

• Basic computer architecture, e.g. floating point arithmetic,
cache hierarchies, pipelining

• Using Unix (or Linux, Mac OS X)
• Language issues, e.g. compiled vs. interpreted,

object oriented, etc.
• Specific languages: Python, Fortran 90/95
• Parallel computing with OpenMP, MPI, IPython

Efficient programming as well as minimizing run time
• Version control: Mercurial (hg),
• Makefiles, Python scripting,
• Debuggers

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Strategy

So much material, so little time....

• Concentrate on basics, simple motivating examples.

• Get enough hands-on experience to be comfortable
experimenting further and learning much more on your
own.

• Learn what’s out there to help select what’s best for your
needs.

• Teach many things “by example” as we go along.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Lecture notes

• html and pdf versions at (green = link in pdf file)
http://www.amath.washington.edu/~rjl/am583

• Written using Sphinx: Python-based system for writing
documentation. Learn by example!!

• Source for each file can be seen by clicking on “Show
Source” on right-hand menu.

• Source files are in class hg repository. You can clone the
repository and run Sphinx yourself to make a local version.

$ hg clone http://bitbucket.org/.../uwamath583s11
$ cd uwamath583s11/sphinx
$ make html
$ firefox _build/html/index.html

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/am583
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/hg.html
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/hg.html

Lecture slides

Slides from lectures will be linked from the Slides section of the
class notes.

Generally in 3 forms, including one with space for taking notes.

With luck they will be posted at least 2 hours before class if you
want to print and bring along.

Note: Slides will contain things not in the notes, lectures will
also include hands-on demos not on the slides.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/notes/slides.html
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/slides.html

Prerequisites

Some programming experience in some language,
e.g., Matlab, C, Java.

You should be comfortable:
• editing a file containing a program and executing it,
• using basic structures like loops, if-then-else, input-output,
• writing subroutines or functions in some language

You are not expected to know Python or Fortran.

Some basic knowledge of linear algebra, e.g.:
• what vectors and matrices are and how to multiply them
• How to go about solving a linear system of equations

Some comfort level for learning new sofware and willingness to
dive in to lots of new things.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Homeworks

There will be 6 homeworks, plus a take-home final “exam”.

Electronic submission: via Mercurial (in order to get experience
using Mercurial!)

Homework assignments will be in the notes.

Main goal: introduce many topics and get some hands-on
experience with each.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/notes/homeworks.html

Homework #1

Homework #1 is in the notes.

Tasks:
• Make sure you have a computer that you can use with

• Unix (e.g. Linux of Mac OSX),
• Python 2.5 or higer,
• Mercurial

See next slide.

• Use Mercurial (hg) to clone the class repository and set up
your own repository.

• Copy a Python script from one to the other and run it,
putting the output in a second file.

• Commit these files and push them to your repository for us
to see.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/sphinx/notes/html/homeworks.html

Computer/Software requirements

You will need access to a computer with a number of things on
it, see the section of the notes on Downloading and Installing
Software.

Note: Unix is often required for scientific computing.

Windows: Many tools we’ll use can be used with Windows, but
learning Unix is part of this class.

Options:
• Install everything you’ll need on your own computer,
• Install VirtualBox and use the Virtual Machine (VM)

created for this class.
• Use a Linux machine in the Applied Mathematics

department (via ssh).

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.amath.washington.edu/~rjl/uwamath583s11/notes/vm.html
http://www.amath.washington.edu/~rjl/uwamath583s11/notes/ssh.html

TA and Office Hours

TA: Grady Lemoine

See the Class Catalyst Page for contact info, updated hours.

Office hours in Guggenheim 406

Monday, Tuesday, Friday 1:30 – 2:30

There is also a Discussion Board on the Class Catalyst Page,
feel free to post (and answer!) questions about getting things
to work.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

https://catalysttools.washington.edu/workspace/rjl/20726/
https://catalysttools.washington.edu/workspace/rjl/20726

Survey

Please take the survey found on the Class Catalyst Page to let
us know about your background and computing plans.

As soon as possible.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

https://catalysttools.washington.edu/workspace/rjl/20726

Computational Science (and Engineering)

Often called the third pillar of science, complementing the
traditional pillars of theory and experiment.

Direct numerical simulation of complex physics / biology /
chemistry is possible.

Typically requires solving very large systems of mathematical
equations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Often called the third pillar of science, complementing the
traditional pillars of theory and experiment.

Direct numerical simulation of complex physics / biology /
chemistry is possible.

Typically requires solving very large systems of mathematical
equations.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science (and Engineering)

Unknowns represent values of some physical quantities, e.g.,

• (x, y, z) locations and velocities of individual atoms in a
molecular dynamics simulation,

• (x, y, z) locations and velocities of individual stars in a
cosmology simulation, e.g. galaxy formation.

• Density, pressure, velocities of a fluid at billions of points in
a fluid dynamics simulation,

• Stress, strain, velocity of a solid at billions of points in a
solid mechanics simulation.

Note: 1000× 1000× 1000 grid has 1 billion grid points.

Need 8 gigabytes to store one variable at all grid points.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Computational Science and Engineering

A few examples of large scale problems for motivation.

Currently, that often means Tera-scale or Peta-scale.

Next comes Exa-scale.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

How fast are computers?

Kilo = thousand (103)
Mega = million (106)
Giga = billion (109)
Tera = trillion (1012)
Peta = 1015

Exa = 1018

Processor speeds usually measured in Gigahertz these days.

Hertz means “machine cycles per second”.

One operation may take a few cycles.

So a 1 GHz processor can do
> 100, 000, 000 operations per second.

Exascale is a billion times more than Gigascale.
(More speed and/or data.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Combustion

Goal: Developing more fuel efficient and cleaner combustion
processes for petroleum and alternative fuels.

Sample computation at Oak Ridge National Laboratory:

Ethylene combustion (simple!)

More than 1 billion grid points,
∆x = ∆y = ∆z =15 microns

4.5 million processor hours on
Jaguar’s 31,000 cores

Generated > 120 terabytes of data

http://www.scidacreview.org/0902/html/news1.html

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.scidacreview.org/0902/html/news1.html

Milky Way’s dark matter halo

Goal: Understand nature of the universe.

Sample computation at Oak Ridge National Laboratory:

1.1 billion particles of dark matter,

simulated for 13.7 billion years

> 1 million processor hours on
Jaguar (3000 cores)

http://www.scidacreview.org/0901/html/bt.html

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.scidacreview.org/0901/html/bt.html

How fast are computers?

Kilo = thousand (103)
Mega = million (106)
Giga = billion (109)
Tera = trillion (1012)
Peta = 1015

Exa = 1018

Processor speeds usually measured in Gigahertz these days.

Hertz means “machine cycles per second”.

One operation may take a few cycles.

So a 1 GHz processor can do
> 100, 000, 000 operations per second.

Exascale is a billion times more than Gigascale.
(More speed and/or data.)

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

How long does it take to solve a linear system?

Solving an n× n linear system Ax = b requires ≈ 1
3n3 flops.

(Using Gauss elimination for a dense matrix.)

On a 100 MFlops system:

n flops time
10 3.3× 102 0.0000033 seconds
100 3.3× 105 0.0033 seconds
1000 3.3× 108 3.33 seconds
10000 3.3× 1011 333 seconds = 5.5 minutes
100000 3.3× 1014 333333 seconds = 92.5 hours
1000000 3.3× 1017 92500 hours = 105 years

Assuming data transfer is not a problem!
It is a problem: It’s often the bottleneck, not compute speed!
106 × 106 matrix has 1012 elements =⇒ 8 terabytes.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

How long does it take to solve a linear system?

Solving an n× n linear system Ax = b requires ≈ 1
3n3 flops.

(Using Gauss elimination for a dense matrix.)

On a 100 MFlops system:

n flops time
10 3.3× 102 0.0000033 seconds
100 3.3× 105 0.0033 seconds
1000 3.3× 108 3.33 seconds
10000 3.3× 1011 333 seconds = 5.5 minutes
100000 3.3× 1014 333333 seconds = 92.5 hours
1000000 3.3× 1017 92500 hours = 105 years

Assuming data transfer is not a problem!
It is a problem: It’s often the bottleneck, not compute speed!
106 × 106 matrix has 1012 elements =⇒ 8 terabytes.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Moore’s Law

01/17/2007 CS267-Lecture 1 4

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Slide source: Jack Dongarra

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

Increasing speed

Moore’s Law: Processor speed doubles every 18 months.
=⇒ factor of 1024 in 15 years.

Going forward: Number of cores doubles every 18 months.

Top: Total computing
power of top 500 com-
puters

Middle: #1 computer

Bottom: #500 computer

http://www.top500.org

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.top500.org

01/17/2007 CS267-Lecture 1 9

More Limits: How fast can a serial computer be?

• Consider the 1 Tflop/s sequential machine:
- Data must travel some distance, r, to get from memory

to CPU.
- To get 1 data element per cycle, this means 1012

times per second at the speed of light, c = 3x108 m/s.
Thus r < c/1012 = 0.3 mm.

• Now put 1 Tbyte of storage in a 0.3 mm x 0.3 mm area:
- Each bit occupies about 1 square Angstrom, or the

size of a small atom.
• No choice but parallelism

r = 0.3
mm

1 Tflop/s, 1
Tbyte sequential
machine

Slide Source: Kathy Yellick

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

http://www.cs.berkeley.edu/~yelick/cs267/

Take away messages

• Massively parallel machines are needed for Petascale or
Exascale (millions or billions of cores).

• But also, all machines going to be multicore soon, with lots
of cores.

• If you want to continue seeing benefiting from hardware
improvements, you need to know something about parallel
computing.

R.J. LeVeque, University of Washington AMath 483/583, Lecture 1, March 28, 2011

	Lecture 1
	Overview of class
	Overview of computational science

