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Abstract

Limit cycle oscillators arise in a wide variety of mechanical, electrical
and biological systems. Recently, emphasis has been placed on the study
of systems of coupled limit cycles, such as cardiac oscillations. Synchro-
nization criteria have remained a focus of most investigations.

One area of investigation in the field of coupled limit cycles is studying
the behavior of a pair of linearly coupled van der Pol oscillators [32, 46, 50].
Previous investigations [57, 58] found the stability regions of the coupled
oscillators for their in-phase and out-of-phase modes numerically.

This research presents results obtained from numerical analysis of a
pair of coupled van der Pol oscillators describing new dynamic behavior;
phase-locked trajectories and non-periodic behavior. Also presented are
the stability regions and a description of new dynamic behavior of a pair
of coupled van der Pol oscillators with detuning.



1 INTRODUCTION

Limit cycle oscillators arise in many biological, mechanical and electrical systems
such as fireflies that flash in unison, large groups of crickets that synchronously
chirp [16], cell division [39], pacemaker cells in the heart, the neural networks in
the spine and brain that control rhythmic actions such as breathing and chew-
ing [16], electric circuits with nonlinear resistance [57], vibrations of bluff bodies
in a crossflow [7], predator-prey interactions [31] and stomatal oscillations [47].
It is because of the remarkable efficiency of these oscillators that the dynamic
behavior of limit cycle oscillators has been studied in great depth.

The van der Pol equation has been adopted as a common mathematical
model for limit cycle oscillators [57] and has been the subject of numerous
studies and its behavior is well understood. The governing equation for the van
der Pol oscillator is:

iPte(@®-1Di+z=0 (1)

where the dot represents differentiation with respect to time. The van der
Pol oscillator has self-sustained oscillations due to the non-linear damping term
(#?2 — 1)i. When |z| < 1, the damping term has a negative value making the
system absorb energy. When |z| > 1, the damping term has a positive value,
meaning the system dissipates energy [4, 23]. The van der Pol oscillator will
reach a steady state oscillation with constant amplitude independent of initial
conditions. This isolated, periodic oscillation is called a limit cycle. A limit
cycle is represented in the phase plane by an isolated closed-loop path.

The non-linearity parameter, ¢, affects the damping of the oscillator, which
greatly affects the solution of the van der Pol equation. When ¢ < 1 the solution
of the van der Pol equation is approximately z(t) = 2cos(t) + O(g). When e > 1
the oscillator is nonsinusoidal displaying the behavior of a relaxation oscillator
which has periodic behavior characterized by a low build up followed by a sudden
discharge [23].

Relaxation oscillators occur in physical phenomenon such as: the beating of
a heart [63], clock ticking [34], and stick-slip motion of a solid sliding across a
rough surface [48]. Belair presents these and other examples in detail [6].

Numerous investigations have been conducted for many years studying vary-
ing aspects of the van der Pol oscillator. Focusing on a single van der Pol oscil-
lator, some research has investigated the period and frequency [3], bifurcation of
a limit cycle [25], chaos [51] and relaxation oscillations [22]. The natural course
of the analysis of the van der Pol equation led to studying the response to pe-
riodic external forcing with attention focusing on questions of synchronization,
frequency locking and phase entrainment [17, 19, 20, 21, 62].

Recently, research has shifted towards the study of the behavior of a system
of coupled oscillators, with the main focus on synchronization criteria. The be-
havior of a pair of coupled limit cycle oscillators display a much wider range of
phenomenon than a single limit cycle oscillator and can be used to model many
different systems, such as cardiac cells [39], gas flux control in plant leaves, vi-
brations of heat exchanger tube banks, Raleigh-Benard convection cell dynamics



and neural synapses of a swimming fish [12].

Rand and Holmes first formulated and studied the problem of a pair of van
der Pol oscillators with weak linear diffusive coupling. The governing equations
are written as:

Fte(@®—1Di+a=cAly—x)+eB(y— 1) (2)
jtely® =g+ (1+ed)y =eA(z —y) +eB(i - y)

where = and y are the dependent variables, A and B are the coupling pa-
rameters, € is the non-linearity parameter and A represents the detuning.

When viewing these equations as a mechanical system, z and y could be
interpreted as the displacements of the masses with €A and B as an attached
spring and damper connecting the two masses. The detuning parameter, A,
allows for the natural frequency of one oscillator to vary from the natural fre-
quency of the other oscillator by introducing a small difference, €A, in the spring
coefficient [48]. The coupling is weak since the O(g) coupling terms are small
for ¢ <« 1 and diffusive so that if two cells that oscillate independently were
placed next to each other the solutes would flow between them via diffusion
and the coupling would be in terms of the concentration differences, (z - y) and
(% - y) [46, 57].

When the coupling terms are equal to zero (with zero or weak detuning), the
system consists of two oscillators each evolving on a limit cycle that is orbitally
stable in a 2-dimensional phase space, independent of the phase relationship.
With nontrivial coupling, the oscillators interact resulting in trajectories per-
turbed from the uncoupled limit cycles embedded in the new 4-dimensional
phase space that can be written as:

X = Ri(t)cos(t — 01(t)), Y = Ra(t)cos(t — 02(t)) (3)

where R;(t) represents amplitude modulation and 6; represents frequency
modulation of a near limit cycle solution [9, 25]. The periodic phase-locked
motions are characterized by constant values of the amplitudes, R; and Rs, and
the phase difference, ¢ = 6 - 6.

Many studies have been conducted on various aspects of the pair of cou-
pled oscillators using different techniques. Rand and Holmes [46] used the two
variable method [27, 41] to determine the periodic solutions and their stability
of the pair of coupled oscillators. Storti and Rand [55] studied the dynamics
of strongly coupled oscillators with displacement coupling (B = 0) in the sinu-
soidal limit (¢ = 1). The transition of the coupled oscillators from phase-locked
motion (phase lag is fixed) to phase entrainment (phase lag varies periodically
with a fixed mean) to drift (phase lag grows without bound) as detuning in-
creases in weak displacement coupling (B = 0) was presented by Chakraborty
and Rand [9]. In the relaxation limit (¢ > 1 for Eq. 2), Belair [5] studied
velocity coupling in a related system with piece-wise linear damping. Storti
and Rand [56] studied the coupled system with strong displacement coupling
(B = 0) having no detuning (A = 0) using a linear variational equation and
Floquet analysis.



More recently, Storti et al. [54] and Storti and Reinhall [57] solved the varia-
tional equation developed by Storti and Rand [56] using an adapted high order
perturbation expansion approach (used by Andersen and Geer [3] and Dadfar
et al. [13]). This analysis lead to a complete set of transition curves for the
in-phase and out-of-phase modes for displacement coupling (B = 0) and veloc-
ity coupling (A = 0). From this analysis the stability regions for the in-phase
and out-of-phase modes in the (A, B, ) space for B # 0 and A # 0 were
completed [57].

This paper presents a numerical investigation of two coupled van der Pol
oscillators. The stability of the in-phase mode as reported in [57, 58] is revisited
and extended, new dynamic behavior is presented and the effect of the stability
of the in-phase mode with increasing detuning in the system is presented.



2 Numerical Results

In order to extend the analytical results previously reported[57, 58] a numerical
investigation of the stability of the in-phase mode was performed. The numer-
ical study was aimed at investigating the affect of the diffusive coupling on a
system of two van der Pol oscillators, therefore the detuning was initially set
to zero. While investigating the in-phase mode stability new dynamic behav-
ior was discovered such as two phase-locked motions and non-periodic (chaotic)
behavior.

Of initial interest was the stability boundary representing the transition from
in-phase stability to in-phase instability. Figure 1 shows the transition curve of
the coupled van der Pol oscillators for e = 2.5, where the x-axis is €A (‘spring’)
and the y-axis is eB (‘damper’). The important features of this graph include:

e The vertical line of €A = -0.5 represents the minimum value of displace-
ment coupling for stability. To the left of this line, regardless of the velocity
coupling B, the in-phase mode is unstable. This line does not depend on e
and not only separates in-phase stability and instability but also separates
oscillatory solutions from non-oscillatory solutions.

e The in-phase mode is stable in the region bounded by the transition graph
on the bottom and the vertical line of e¢A = -0.5 to the left.

e The in-phase mode is unstable to the right of eA = -0.5 and below the
curve.

e The out-of-phase mode is stable in the region bounded on top by the
horizontal line eB = 0 and on the left by the vertical line of eéA = -0.5.
Therefore, both the in-phase mode and out-of-phase mode are stable in
the region above the transition curve and below éB = 0.

e The horizontal line segments represent the B.,,q, zero mean damping.
This value is the critical velocity coupling where the in-phase mode is
unstable when the velocity coupling is below this value. The B.,,,q line
is negative and increases in magnitude as ¢ increases. As € increases, the
B, g line shifts ‘down’ the B axis faster than the actual transition ovals.
Therefore at large € values the horizontal B,,,q line is not part of the
transition curve. The value of B,,,q can be determined using higher order
expansion in the equation: B,,,q = - %(u2 - 1), where u is the limit cycle
of the van der Pol equation as outlined in [3].

e The ovals or ‘bumps’ in the transition graph come from the coefficients of
the Hill’s equation. These coeflicients give instability points for € = 0 as
shown in [58].

One note of interest in Figure 1 is that the curve goes above the eB = 0 line.
This means that the in-phase mode is unstable with small positive coupling.
This result can be counter-intuitive because of our knowledge of phase coupling.
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Figure 1: Transition Curve, e = 2.5.

With zero detuning the coupled oscillators are identical, one would expect the
positive damping would decrease a difference in velocity between the oscillators.
Similarly a difference in amplitude would be expected to be decreased by a
positive spring.

The findings from Storti and Reinhall [57, 58] and the numerical results show
regions in the positive eA and B plane where the in-phase mode is unstable.
The reason for this non-intuitive result is that phase coupling is based on sinu-
soidal limit cycles. With € = 2.5, the limit cycle of the van der Pol oscillator
is not sinusoidal and as € grows the limit cycle becomes even less sinusoidal
and therefore less important in the determination of the stability regions of the
coupled oscillators.

Figure 2 shows the transition curves for € values of 0.5 through 10 in 0.5
increments. The uppermost line extending to the right of the graph represents
the transition curve for ¢ = 0.5, the lowermost line represents the transition
curve for ¢ = 10. The € = 0.5 curve has the smallest oval on the left. As
¢ increases, the ovals grow in size and the B,,,q line extending across the €A
values moves down (decreasing B). As stated earlier, the B4 line moves down
the B axis faster than the ovals as € grows. This can be seen by comparing the
transition curve for ¢ = 2 and € = 10. For ¢ = 10 the transition curve displays
no horizontal line as the B,,,q line is found at éB = -8.166, far below the ovals.
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Figure 2: Transition Curves, ¢ = 0.5:10 in ¢ = 0.5 increments. (¢ = 0.5 on top
and € = 10 on bottom.)
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Figure 3: Shifted Asymmetric Trajectory (e = 10, eB = -2.5, A = 1.765).

3 Phase-Locked Trajectories

In addition to the in-phase and out-of-phase motion, we also found two shifted
phase-locked motions. These shifted phase-locked motions occur when the os-
cillators are neither identical (in-phase) nor a reflection of each other (out-of-
phase). Instead, the motion is characterized by each oscillator having a different
zero-crossing time. The two phase-locked modes are shifted asymmetric mode
and shifted symmetric mode.

The shifted asymmetric mode is defined by the zero crossings of each os-
cillator being a fixed time lag apart. Figure 3 shows a sample time history of
the two oscillators locked in the shifted asymmetric mode (¢ = 10, eB = -2.5,
€A = 1.765). This time trace shows that the motion of the two oscillators is
not the same. Minimally, the oscillators will have distinct amplitudes and quite
often the motion of the oscillators (shape of response) will be distinct. Even
with different amplitudes and shape, the concept of phase lag is still valid when
the phase lag, ¢, is defined in terms of the time lag, 6t, and period, T', as shown
in the following equation.

, 0t
¢ = 360 T (4)
The second shifted phase-locked mode, shifted symmetric, is characterized
by one oscillator having zero crossings which alternate between being ahead and
behind the other oscillator. Each oscillator has the same amplitude and the time
trace of one oscillator is equal to half a period shift and a reflection of the other

oscillator. Figure 4 shows a sample time history of the two oscillators locked in
the shifted symmetric mode (¢ = 10, eB = -2.5, eA = 2.75).
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Figure 4: Shifted Symmetric Trajectory (¢ = 10, eB = -2.5, cA = 2.75).

Figure 5 shows the transition curve for ¢ = 10, that includes the stability
regions for the phase-locked modes. The larger left most region defines the
region where the shifted asymmetric mode is found. In the smaller enclosed
region defines the area where the shifted symmetric mode is found. These phase-
locked areas remain in approximately the same locations as epsilon changes.
Figure 6 shows the transition curves for ¢ = 10, 7.5, 5 and 2.5, respectively,
each with the shifted asymmetric and shifted symmetric regions included. Both
the shifted phase-locked motions are found to disappear for ¢ < 2.5.

Figure 7 shows how the phase lag, ¢, changes from the in-phase stability
region through the shifted asymmetric region into the in-phase unstable region
as eB changes with éA = 0.3 and ¢ = 10.0. The phase angle remains at 0°
until eB = 0.125 when the oscillators cross the transition curve and enter the
shifted asymmetric region. The oscillators remain in the shifted asymmetric
region until eB = -0.2, where they move into the in-phase unstable region where
the phase angle jumps to 180°.
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Figure 8: Time History of Chaotic Regime (¢ = 10, eB = -2.5, cA = 2.033).

4 Non-Periodic Behavior

A small region of chaotic motion was also found below the transition curve and
between the two phase-locking regions. For € = 10 this region is a thin strip
extending from approximately eA = 1.95 and B = -2.6 on the lower left to
eA = 2.08 and ¢B = -2.4 on the upper right.

Figure 8 shows a time history of the chaotic response at ¢ = 10, eB = -2.5,
eA = 2.033. Figure 9 shows the corresponding strange attractor in the x, y, ‘fi—f
space.

The bifurcation map of Figure 10 shows the maximum peak of the response of
the z oscillator as €A is changed along a path connecting the two shifted phase-
locked responses. The line at approximately 2.35 corresponds to the amplitude
of the out-of-phase mode which is also stable at this part of the parameter space.

The location of the chaotic region is below the transition curve (where the
in-phase mode is unstable) and between the shifted symmetric and shifted asym-
metric regions regardless of the € value. As ¢ grows, the shifted regions grow
larger and are located farther underneath the transition curve, as shown by
Figures 5 and 6. Therefore the chaotic region grows in ‘height’ (¢B). Fig-
ure 11 shows the transition curves with the chaotic regions for selected e values
(e = 8.5,9.5, 10, 10.5, 11.5 and 12.5). The chaotic region is represented by the
dark marks on the graphs. This region is generally found on the right hand
side of the left most oval, near where the two ovals come together. The figure
for the non-linear parameter ¢ = 10 (center left) also shows the phase locked
regions. Figure 11 shows the chaotic region, barely visible at ¢ = 8.5, growing
as the non-linear parameter grows. It is clear to see that the chaotic behavior
is found below the transition curve where the in-phase mode is unstable and

12
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Figure 9: Phase Space Plot (¢ = 10, eéB = -2.5, ¢A = 2.033).

between the two shifted regions.

As stated earlier, chaos is found below the transition curve and between
the shifted phase-locked regions. Therefore, at small € values where the shifted
phase-locked regions either disappear (¢ = 2.5) or shrink sufficiently so that
they are no longer in line with each other and the space between them is not
found below the transition curve (¢ = 5.0) the region where the chaotic behavior
is found is eliminated. This can be seen from Figure 6. The smallest ¢ value
where chaotic behavior is found is € = 7.5. Here the space between the shifted
asymmetric and shifted symmetric regions is found below the transition curve
in a very small area. Thus, the chaotic behavior for € = 7.5 is found in a much
smaller region than higher ¢ values. As e grows from 7.5 the chaotic region
grows in terms of both the coupling parameters (¢A and €B). At large ¢ values
(¢ > 17) the shifted regions continue to grow and nearly come together under
the transition curve thus almost completely eliminating the chaotic region. At
these large ¢ values, the size of the chaotic region is very small, on the same
scale as the chaotic region for ¢ = 7.5.

13
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Figure 12: Transition Curves (¢A = 0.5, eA = 0.25, eA = 0).

5 Detuning

The dynamic behaviors previously described were found in the system of two
linearly coupled identical van der Pol oscillators. Thus, the detuning parameter,
e/, was equal to zero throughout the numerical simulations keeping the natural
frequencies of each oscillator identical. With both oscillators identical, their
motion can be characterized as either unstable (¢A < -0.5) or phase-locked
(excluding the small areas of chaos) in one of the following modes: in-phase, out-
of-phase, shifted symmetric or shifted asymmetric. When introducing detuning
to the system (¢A # 0), thus having two oscillators with different frequencies,
new dynamic behavior has been discovered. This behavior will be discussed
later.

Figure 12 shows the transition graphs for three different detuning values,
(eA =0,0.25 and 0.5). As stated earlier, the curves represent the point at which
the in-phase mode becomes unstable (above the curve, the in-phase mode is sta-
ble, below the curve the in-phase mode is unstable). All three transition curves
have similar shapes; horizontal lines (B.,,4) along the eB axis with cascading
ovals. It can be seen that as the detuning parameter increases the transition
curve shifts up the eB axis (+ B direction) and the ovals shift to the right on
the A axis (+ €A direction).

Figure 13 shows the transition curve for eA = 0.25 compared with the no-
detuning case. The curve labeled in-phase (IP) shows where the in-phase mode
loses stability (above the curve stable, below the curve unstable). The curve
labeled out-of-phase (OOP) shows where both the in-phase mode and the no
phase-locking mode lose stability (below the curve). For ¢éA > 0.5 both the
in-phase curve and the out-of-phase curve are the same and the response of

15
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Figure 13: Transition Curve, (¢A = 0.25 and eA = 0).

the oscillators is similar to the response of the oscillators without detuning,
they transition from in-phase stability directly to out-of-phase stability. In the
region bounded by -0.5 < A < 0.5 the curves are different meaning there is no
phase-locking mode found between the curves.

The expected behavior with no phase-locking is drift. Drift is found when
the coupling parameters are small, thus each oscillator oscillates independently
of the other with different frequencies. Quantitatively, drift is measured by
calculating the phase lag (Eq. 4) between the oscillators. While drifting, the
phase lag will grow. Conversely, phase-locked motion (in-phase, out-of-phase,
shifted) has a constant phase lag. Figure 14 shows the time history of the
drift found with eA = 0.25 and eA = ¢B = 0. The time history shows that
each oscillator has a different frequency and the phase lag (time between zero
crossings) is growing.

Figures 15 and 16 show time histories of the coupled oscillators within the
region of no phase-locking. Each time history displays a much different behavior
than the drift described earlier as each time history shows beating. Studying the
response of Figure 15 one can see that the beating has a slower frequency than
the response of Figure 16. One interesting note is the transition of the oscillators
from the lowest amplitude back to the highest amplitude. In Figure 15 the
frequency of the individual oscillators changes at this transition point while in
Figure 16 the oscillator with the smallest amplitude (thick line) displays erratic
behavior when transitioning to the higher amplitude. These different behaviors
of the coupled oscillators are found on the edges of the no phase-locking regions
very near the transition to the out-of-phase stability region.

The third dynamic behavior found in the no phase-locking region was chaos.
Figure 17 shows the time history of the chaotic regime for eA = 0.25 with

16
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Figure 14: Time History, Drift, No Phase-Locking Region with Detuning,
(eA=025e=1,eA=0,eB=0).

€A = -0.352 and €B = -0.043. Again, this behavior is found at the edge of the
no phase-locking region near the transition point to out-of-phase stability.

Figure 18 shows the transition curve for eA = 0.5 compared with the no
detuning case. The transition curves are similar to the transition curve for
eA = 0.25, but with a larger no phase-locking region.

17
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Figure 15: Time History, Beating, No Phase-Locking Region with Detuning,
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Figure 17: Time History, Chaos, No Phase-Locking Region with Detuning,
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Figure 18: Transition Curve, (¢A = 0.5 and e¢A = 0).
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6 Conclusions

We have presented a complete description, using numerical simulations, of the
dynamic behavior of a system of a pair of linearly coupled van der Pol oscilla-
tors. The different dynamic behaviors found include; shifted asymmetric, shifted
symmetric and chaos. Time histories of each behavior has been presented in Fig-
ures 3, 4 and 8. Along with the actual time history of each behavior, the regions
of each behavior has been mapped onto the coupling parameter space. These
regions have also been described as the non-linearity parameter € changes.
Also reported are the stability regions for the in-phase mode of a pair of
coupled van der Pol oscillators with detuning. With small detuning added to
one oscillator, the transition curves retain a similar shape as the transition
curves without detuning; horizontal line (B,,,q) and cascading ovals. It was
shown that as detuning increases the transition curve shifts up the ¢B axis.
Therefore, as detuning increases the coupling parameters must be stronger in
order for the in-phase mode to remain stable. Also reported were three dynamic
behaviors found in the system with detuning; drift, beating and chaos.
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