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7.6. A beam of mass per unit length m(x) and bending stiffness El(x), free at both ends lies on an elastic foundation of
distributed stiffness k(x), as shown in Fig. 7.35. Derive the boundary-value problem for the bending vibration of the beam.

Off [General::"spelll", General: t"spell"]

Hamilton's Principle

From Hamilton's principle, we can write

ST -6V + Wy

(Eq.1.1)
Swix, 1) =6w(x, 1) =0 (Eq.1.2)
We need to derive expressions for§ T, 6 ¥, and OW,.
Kinetic Energy
The kinetic energy is given by
_ 1 rL dw(x) | 2 '
=7 J M) (=) dx (Eq.1.3)

We can now calculate the variation of T. To make the calculation easier, we can denote —D%(fi)- =w(x, 1)

6T [—;— LLm(x) Wix, 1)2 dx]

= 3 [ olmx) wix, 0 dx
= 1 [H{5% Imx) wix, 0716 mex) + Ty () Wi, 0716 w(x, 1) dx
Since we only allow w(x, 1) to vary, then 6 m(x) = 0

= % fOLWi-E[m(x) wix, 26 w(x, 1) dx

= foLm(x) wix, 1) 6[5‘9-,-[w(x, Ol dx

Now, if we assume that the §[ ...} and %[ ...] operators are interchangable (see Appendix A), we can write

ST = [ m(x) 2550 2 15000x 1] dx

(Eq.1.49)




Potential Energy

The potential energy is given by a combination of the bendin,

g moment which wants to restore the beam to its original
position and the spring forces.

V= Voena + Vspring (Eq.1.5)

)zdx

where Vbc,,d=% \fo El(x)(%%ﬂ

We can now calculate the variation in V. Let
easier, we can denote iWa:M =w'(x, 1)

Vipring = + [ Kx) w(, 1) dix

§ start with the bending moment potential variation, To make the calculation

6 Voens = 6% IO w" (5, 1 dx]
= 21 LLé[EI(x) w'(x, t)z] dx

L
= 3 b {78 EI®) w" x, )4 S Elx) + 75 B W, 026w (x, ) dx
Once again, we only allow w(x, 1) to vary, so 6 El(x) =0

= 2l f()LR"‘a(Tb[EI(x) w"(x, 0%16w" (x, ) dx

o

‘ =£LEI’(X—):V"(X, HEw" (x, dx

= Bl L350 o] 21 fwix, 0]] dx

Once again, we switch the %[ ...] and &{ ...] operator to obtain

6 Voend = LLEI(X) %ﬁ a_a:}_f Swix, D1dF (Eq.1.6)

We can simplify this even further by using integration by parts. Namely, we have

L
fu0 B dx = ) i) | - o) 420
0

so we choose

u(x) = El(x) Lyt I e | R
avixy _

P = lowin 0l> v = L (6wix, 0]



£q.1.6 becomes

6 Vyend = [EI(x) y;i,,) aax S wix, t)” L ok, 0] 5 g [EI( )———l"(“' ]d

Let us examine the integral more closely. As can seen, we need to integrate by parts once more. We can choose

u(x) = a—ax[El(X) %t'—,l] = ) = aﬁr[EI(x) ngl ]

%&Q = 56w 0] = V(x) =6 w(x, 1)

So the WW by —

L L
8 Voena = [El(x) T4 2 510z, 1)] [ -[ L [Elex) L0 6wr, 0] [+ -2+ [El) 2 SEL swx, ndx )
0 0
Y _\;\_//4&1.1%

Now for the spring, we have

6 Vspring = 6[% LLk(X) w(x, 1)2 ;D
= _21. j;l'd[k(x) w(x, )* ] dx

= % fOL{ %(x) [4(x) w(x, 1)2] 0 k(x) + Wt(ax,ﬁ[k(x) w(x, 1)2] Swix, 1)} dx
Once again, we only allow w(x, 7) to vary,so 8 k(x) =0

= 5k 7ty R we, 0216w, 0 dx

6 Vepring = [ k() w(x, 1) 6w(x, 1) dx (Eq.1.8)
So the total variation in potential energy is

6V =6Vena+6 Vspring

S~

L
=[E10) B4 £ 5wix, 0] [ <[ & [Biw) ZHa) 5 wix, 1)
0

o [EI(x) Tl  Swix, 1) dx + Kk we, 06w, ndx
//\ - -

L
|-

<' V=[Bl(x) 2250 2 5 x)]0 [ [EI) £ 5 (e, ) | + (& [BI) 26| 4 k(x) wi, n)éwix, dx




Nonconservative Work

The nonconservatjve work is simply given by
— _\

W= LLf(x, Owx, Ndx

(Eq.1.9)
¢ can now calculate the variation i W

Ve =6[f £ 5, D wis, 1]
= _ﬁd[f(x, Dwix, Nidx

= fOLgfle) U, 0w(x, 0)6 fx, H+ szr,l) Utx, wix, 0] 6 wix, )dx

Once again, we only allow wix, t) to vary,s06 f(x, 1) = 0

S b wor UG, 0w, 016 w(x, ) dx ,

O Wy = LLf > NEw(x, ndx (Eq.1.10)



Hamilton's Principle

We can now insert the expressions for § T, § v » and§ W,; into the Hamilton's principle equation (Eq.1.1) to obtain

/]’(5 T-6V+6Wo)dr=0
f“ S Tdi- Jlevdrs f“”iw‘; dt=0 (Eq.1.1])
Ist term

Let's evaluate the first integral

( frorac= P fime) 25 850 g

We can switch the order of integration to obtain

= LLfl.u”’(x) L‘B(-,XL) ,%[5 wx, ) dtdx

We can perform the inner integral w.r.t. ¢ using integration by parts by choosing

u(e) = m(x) Lzd) = 20 - Leual

Sr=50wx ) > w) =6 w(x, 1)

%
Therefore, we have _

13 .
(m(x) 2228 wix, 0] | - [ mx) 2280 g5, di}dx

However, by Eq.1.2, we know that that variation at the end

times must be zero, so 6w, 1) = 8w, 1) =
switching the order of integration)

0 and we have (also

"§Tdr= = [" [“mz) Zren (Eq.1.12)
LoTde= - [ ) 226 500 dxa 7



2nd term

We can now evaluate the second integral

IRITTE

/‘r///lz . L L
/< f ([B10 T5%2 2 5w, )| -[ L [E1x) T 6 wix, 0] | + INE2 L] 4 k) wix, 1) i, 1 dx)d1
n 0 - 0

(Eq.1.13)
This is already as simplified as it can be,

3rd term

g

/ We can now
o— L
FoWadi= [" [ £, 05 wix, e (Eq.1.14)
This is alfeady-assimplified as it can be,

aluate the third integral




Form Equation of Motion

We can now substitute Eq.1.12, Eq.1.13, and Eq.1.14 into Eq.1.11 to obtain

I Tdi- [ Vdi+ [*5Wodi=0
-foTdis [ Vdi- [*5Wedi =0

7 L 2
f,,zfo m(x) L;',@ Swix, ndxdr+

!, L
jl‘,z {BCS +f0 (%[El(x) gzawi—:” +k(x) w(x, ’))5“’(16, I)dx} dt- _[llzfol'f(x, ND8wlx, ydxdt=0

L
where BCs = [El(x) 200 0 5, D] | =[5 [Elr) 2252 64z, 0]
0

Qe

h L wix
) {BCs+ [ [(,%[E;(x) ZHE) 4 k) i, 1)+ () Ltad 52 - fx, 0] 6w, 1 difdi=0  (Ep115

We can now invoke the arbitrariness of the variation in & w(x, /). Therefore, the only way for the inner integral to be zero is
if the coefficent of § w(x, 1) is identically equivalent to zero for allx and ¢. Therefore

(Eq.1.16)

)' Z:[Bltw Lasti) | + k@) wix, 0 + m(x) THed _ (2, )=0

In addition to this, we also require that the term outside the integral w.r.t. x be zero at as well. Therefore, this term is given
by

Pwix)) 9 L_ 9 Pulx) I =
(Bl S5 7 v, 0] | ~[ 2 [E1) Z3t52 ] s i, ] [ =0
0 0

==

Since we know the EI(0) and EI(L) cannot be zero, we can form the boundary conditions. For the end at x = 0 we need
either

El(x) £ = g or  Sw(xN=0 =wx (=0 (atx=0) (Eq.1.17)

and also we require that either
E@ S o 520 Lo 5 0800 Lo (g, g (Eq.1.18)

And similarly for the end at x = L.

Note that we could have ignored the spring force in the formulation of the potential energy and then later, we could have
called this force a non-conservative force and inserted Sx, 1) = —k(x) w(x, 1) in at Eq.1.16. We would then perform the
integration if necessary to obtain any boundary conditions and we would obtain Eq.1.15 once again.



