Test 1- ME 374

Winter 1931
(Open book and notes).

1) (50%)
a) Consider the system in Figure 1 when $k_{1}=100, M=1, f(t)=\sin (9.9 t)$.

Using the transfer function that relates x to f determine the steady state amplitude of $\mathrm{x}(\mathrm{t})$
b) If a second mass and spring are added to the system as shown in Figure 2 the equation of motions become

$$
\begin{aligned}
& M \ddot{x}+k_{1} x+k_{2}(x-y)=f(t) \\
& m \ddot{y}+k_{2}(y-x)=0
\end{aligned}
$$

Show the pole(s) and zeros(s) of the transfer function $\mathrm{H}(\mathrm{s})=\mathrm{X} / \mathrm{F}$ in the complex plane. Since there is no damping the poles are all purely imaginary. What should m / k be in order for the steady state solution $\mathrm{x}_{\mathrm{p}}(\mathrm{t})=0$.

Figure 1

Figure 2

2) (50\%) Consider the following state equation
$\frac{d}{d t}\binom{v}{f}=\left[\begin{array}{ll}4 & 2 \\ 3 & 5\end{array}\right]\binom{v}{f}$
with
$\binom{v}{f}=\binom{2}{1}$ at $t=0$
Using the state transition matrix obtain f as a function of time.

