The purpose of this lab is to measure the response of the following electrical circuit and qualitatively predict the response.

The voltage source is a square wave with period T and amplitude 1.0 V peak-to-peak, i.e.,

$$v_s(t) = \begin{cases} 0.5, & 0 < t < T/2 \\ -0.5, & T/2 < t < T \end{cases}$$

Pre-Lab Problem

Answer the following pre-lab questions.

- 1. Derive the governing equation of the circuit using $v_s(t)$ as input and $v_c(t)$ as output.
- 2. Derive and plot the frequency response function from $v_s(t)$ to $v_c(t)$.
- 3. Expand $v_s(t)$ into a Fourier series. Calculate the Fourier coefficients and fundamental frequency ω_0 for square waves of periods T = 0.2 s, 0.02 s, 0.002 s, and 0.0002 s.
- 4. Plot the Fourier coefficients of the first 5 non-zero terms with respect to frequency for square waves of periods T = 0.2 s, 0.02 s, 0.002 s, and 0.0002 s. These plots are the line spectra of v_s(t).

Laboratory Procedure

- 1) Set up the function generator to apply a square wave of amplitude 1.0 v peak-to-peak.
- 2) Connect the function generator to the circuit as shown above in the figure, and to Input-1 of the LabVIEW interface. Connect the voltage across the capacitor to the input-2 of the LabVIEW interface.
- 3) For each of the square wave frequencies in the table, record and plot three periods of the input and the response.

Square Wave Frequency		Period
rad	Hz	milliseconds
sec		
31.42	5.	200
314.2	50.	20
3142.	500.	2
31420.	5000.	0.2

- 4) For each case, explain the nature of the recorded time response. Calculate the response using the line spectrum and frequency response function obtained from the pre-lab. Why do you believe that your calculations predict the measured response?
- 5) Switch the function generator to generate a triangle wave and examine the behavior across the same range of frequencies. Do you observe the same characteristics as in square-wave excitation?