The purpose of this lab is to measure the response of the following electrical circuit and qualitatively predict the response.

The voltage source is a square wave with period T and amplitude 1.0 V peak-to-peak, i.e.,

$$
v_{s}(t)=\left\{\begin{array}{cc}
0.5, & 0<t<T / 2 \\
-0.5, & T / 2<t<T
\end{array}\right.
$$

Pre-Lab Problem

Answer the following pre-lab questions.

1. Derive the governing equation of the circuit using $v_{s}(t)$ as input and $v_{c}(t)$ as output.
2. Derive and plot the frequency response function from $v_{s}(t)$ to $v_{c}(t)$.
3. Expand $v_{s}(t)$ into a Fourier series.

Calculate the Fourier coefficients and fundamental frequency ω_{0} for square waves of periods $\mathrm{T}=0.2 \mathrm{~s}, 0.02 \mathrm{~s}, 0.002$ s, and 0.0002 s .
4. Plot the Fourier coefficients of the first 5 non-zero terms with respect to frequency for square waves of periods T $=0.2 \mathrm{~s}, 0.02 \mathrm{~s}, 0.002 \mathrm{~s}$, and 0.0002 s .
These plots are the line spectra of $v_{s}(t)$.

Laboratory Procedure

1) Set up the function generator to apply a square wave of amplitude 1.0 v peak-topeak.
2) Connect the function generator to the circuit as shown above in the figure, and to Input- 1 of the LabVIEW interface. Connect the voltage across the capacitor to the input-2 of the LabVIEW interface.
3) For each of the square wave frequencies in the table, record and plot three periods of the input and the response.

Square Wave Frequency		Period
$\frac{\mathrm{rad}}{\mathrm{sec}}$	Hz	milliseconds
31.42	5.	200
314.2	50.	20
3142.	500.	2
31420.	5000.	0.2

4) For each case, explain the nature of the recorded time response. Calculate the response using the line spectrum and frequency response function obtained from the pre-lab. Why do you believe that your calculations predict the measured response?
5) Switch the function generator to generate a triangle wave and examine the behavior across the same range of frequencies. Do you observe the same characteristics as in square-wave excitation?
