142 Sinusoidal Frequency Response of Linear Systems

. The three wavefrorms are shown below:
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(c) As the input frequency increases (i) the output amplitude decreases, and (ii) the phase
shift becomes more negative.
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Problem 14.2
For the circuit in Figure 14.24(a)

(a) The transfer function is

1
H
(s) RCs+1
(b) The frequency response is
, 1
H(jw) = H(s)|,o;, = TRCo Tl
giving
1 1
001 = bt
() JRCw +1 (RC1w)? +1

LH(jw) = £(1)= L(jRCw+1) = tan™" (RCw)

The amplitude and phase plots are shown on the next page

(¢) This is a low-pass system begause high frequencies are attenuated.
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For the circuit in Figure 14.24(b)

(a) The transfer function is

RC's
He) = moe31
(b} The frequency response is
) JRCw
H(jw) = H(s)| e, = TRCw 11
giving
H(jw)| = ‘ JRCw | RCw
JRCw+1|  \J(RCw)?+1

(H{jw) = [(jRCw)—L(jRCw+1)=7/2—tan™"' (RCw)

The amplitude and phase plots are shown below:
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(¢) This is a high-pass system begause as the frequency approaches zero |H{jw)| tends to
zero.

Problem 14.3
For the Kelvin model shown In Figure 14.25(a)

(a) The system transfer function is

(b) The frequency response is

o Jw _ 70.01w
T jBw+ K j0.2w+1

with K = 100 N/m, and B = 20 N-s/m.

H(jw)

(¢) The frequency response magnitude function 1s
0.01w
+/{0.2w)? 41

This sytem will not respond to low frequencies because of the zero at the origin. At
high frequencies the response will asymptotically aproach a constant value.

|H(jw)| =

For the Maxwell model shown In Figure 14.25(b)

(a) The system transfer function is
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(b) The frequency response is

. 1 1
H(jw) = %Y + B 70.01w + 0.05

with K = 100 N/m, and B = 20 N-s/m.

{(c) The frequency response magnitude function is

|H(jw)| = 1/(0.01w)? + 0.05%

At low frequencies the response will approach a constant value ( |H(jw)l — 0.05),
while at high frequencies the response magnitude will increase without bound.

Note: Both of these models ignore inertial forces.
Problem 14.4

1) 1(me)
H(s) =57 = S5 (haf(me)

(a) From the transfer function:
T AL 1

dt | me,  me

Qs

(b) The steady-state temperature T., is found by letting all derivatives approach zero, that
isIf the solar heat flow is a constant, that is

1
Tss = HQD
(c) From the transfer function:
L _TGe) e
HU) = Q5 ~ T (b (me,)
Then 1/(me,)
M| = mcep ) = an_l—%
|H (5w}l T Al LH(jw) = —tan™"

(d) If Q.(t) = Q,sin(wt = 7/2) + Qaug and w = 27/365 rad/day, the annual fluctuation of
the pond temperature A(T) is
_ 1(me)
@) + (h4/ (me,)?

A(t) = Qo |H(jw)luzr
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(e) The annual fluctuation of pond temperature is descibed by

1/(me,)

T(t) = T, + sin
(1) J(27)2 + (RA/ (me,))? (

wt — /2 — tan™! ECJB)

hA

which is a maximum when wt — 7/2 — tan™!(me¢,/hA) = 7/2 or
tmaz = (7/2—{(~7%/2—tan"" mc,/RA))/27 years

. 1 1 —1 mcp)
= 365 ( 5 + 5 tan T days from the start of the year.

Problem 14.3

(a) We do not derive the transfer function in detail here. Either the linear graph or
impedance methods may be used to show that the transfer function between the ve-
locity of the mass and the velocity of the base is :

Vi (s) Bs+ K

Vi(s) T ms2+ Bs+ K

We note that the displacements of the mass (z()) and the base (u(t)) are the integrals
of the respective velocities, and therefore

X(s)  Bs+K

U(s)  ms2+Bs+K

Also, y(t) = z(t) — u(t) so that

VG X
H(s) = U(s) ~ Us —i=g +(B/m)s+ K[m
(b)
L _ m{jw)?
H(JW) = H(s)ls=jw - m(jw)? + jBw+ K
and
1B (i) = e
) UK [m = w2) + (B/m)?
LH (o) = 7 = tan (7

(c) Consider the behavior of H(jw) when
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(i) w < K/m. In this case

which is the frequency response of the differerential equation

(t) = K d*u
= m dt?
so that the seismometer acts to record the acceleration of the base.

(ii) w > K/m. In this case the second-order term in the denominator dominates and
H{jw) =1

The output then follows the displacement of the base.

Problem 14.6
(a)

2 x 10°
H(jw) = :
(32) (jw)? + 720w + 10°
and
2 % 108 ) 20w
H{jw)| = and (H(jw)=—tan™ ' ———
{H{jw)| \/(TOG — (0)2)? + (20w)? (jw) 106 — 2
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(b) When w = 250 rad/s, the amplitude and phase are

6
|H(5250)] = 2x 10 ~9.133
/(108 — (250)?) + (20 x 250)°
_y 20 x 250

LH(j250) = —tan = —.00533 rad (or -0.305°)

108 — 2502
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Problem 14.7

(a) No, the stability of a system is not affected by its zeros.

(b} The form of the Bode plots depends on the relative location of the pole and zero. For
example below we take |a| = 2, and b= 1.

) s+1
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s+1 _
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(¢) The magnitude of the frequency response function is not affected by whether a zero
is located in the left-half plane or its relection about the imaginary axis. The phase
response is significantly affect however. In general the phase-shift associated with a
right-half plane zero 1s greater than that of the corresponding left-half plane position -
this can be easily demoinstrated using the geometric interpretation from the pole-zero
plot. Hence the name “non-minimum phase” system.

(d) If

then
HERY: + 2
| Hz(jw)| = —(—E—)—C}w =1 and (H(jw)=7—2tan"'(jw/a)

(jw)t + a2
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5s+1
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Problem 14.9

The solutions provided are based on the geometric interpretation of the frequency response

(Sec 14.7).

(a) The break points are determined by the radial distance of the poles and zeros from the
origin. The highest frequency break frequency is therefore determined by the most
distant pole or zero: (a) 5 rad/s, (b) 156.2 rad/s, (c) 3.162 rad/s, (d) 12 rad/s. The
slope of the high frequency asymptote is —(n, — n,) * 20 dB/decad where n,is the
number of system poles and n, is the number of system zeros: (a) -20dB/decade, (b)
-40dB/decade, (¢} -40 dB/decade, (d) -20dB/decade.
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(b) The asymptotic high frequency phase response is (7, — np)*7/2 rad: (a) —7/2 rad, {b)
—7 rad, —7 rad, —7/2 rad.

(c) The low frequency asymptotic behavior 1s determined by poles or zeros at the origin: (a)
the low frequency response tends to a constant value, (b) the low frequency response
tends to infinity, (c) the low frequency response tends to zero, (d) while in principle the
low frequency response tends to a constant value, this is a marginally stable system.

(d) The low frequency phase shift is determined by the contribution from each pole and
zero : left-half plane poles/zeros do not contribute, right half plane zeros contribute 7
rad, zeros and poles at the origin contribute £ /2 rad. (a) 0 rad, (b) —7/2 rad, (c)
+37/2 rad, (d) 0 rad. .

Problem 14.10

Note: There is an error in early printings of the book ~ the pole locations should read:

. .The Nth-order Butterworth filter has its IV poles equally spaced on a circle
in the left-half s-plane,

Do = wodTEAN-VN 12 N

where p, is the nth pole location, w, is the half-power (-3dB) cut-off frequency
of the filter. ..

We continue with the problem as intended, if the incorrect form is assumed the effect is to
redefine attenuation at the filter cut-oft frequency w..

(a) The poles are located at

Vi B

p o= we = — e + 75w = —0.707Tw, + 70.70Tw,
. 2 2
P2 = wceJSTr/4 = ————é—‘wc - j%—)—wc = —0.70Tw, — 30.707w,

The unity gain second order system is

2

PPz W

H(s) = = £
O = o =) ~ 4 Vs 4 2

the damping ratio { = 0.707, and the undamped natural frequency wy = we rad/s.
(b) For the third-order filter (N = 3) with w, = 27 x 100 rad/s, the poles will be at locations

p1 = (we)e™/® = 3142+ 7544.1
py = (we)e®/%=—6283
ps = (w)e®/® = -314.2— j5441
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(b) The Bode plots are:

Beode Magnitude Plot Bode Phase Plot (degrees)
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(c)

. 1000(jw + 1000)
H5w) = 0 3000w + 100)

At low frequencies |jw| — 5 while at high frequencies |jw| — 1000/w.

Problem 14.13

(a) At the -3 dB frequency
K V2K

\/(wr)2 +1 B

which is solved to givew =1/7. If T =1, then w = 1.

|H{jw)| =

(b) The overall transfer function is
TS + 1 K
“rs+17s+1

If 7 is adjusted to be 1 s, there is pole-zero cancellation and the transfer function
becomes
KK,

Ta8 + 1
and the cut-off frequency of the system is 1/m;. To double the cut-off frequency from
1 rad/s to 2rad/s, 7 = 0.5. The -20 dB frequency wo, is found from

KK,
(0.5000.1)2 + 1

or wo1 = V396 = 19.9 rad/s, and the response is attenuated by more than 20 dB for
frequencies greater than 19.1 rad/s.

H;(S) =K

H]_(S) =

|H (jwoi)l = =0.1KK,

st e e T

S e e 10
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Problem 14.14

(a) The transfer functions Hj(s) relating the force in the spring Fx to the input force F,
and Hy(s) relating the damper force Fp to the input force are

_ K Hyls) = Bs
T ms?+Bs+ K’ N T 2+ Bs+ K

The force transmitted to the care frame is F = Fx -+ Fg, so that the overall transfer
function is

Hl(s)

(B/m)s + K[m
2+ (B/m)s + Kfm

H(s) = Hi(s) + Ha(s) =

(b) For a second-order system the resonant frequency is (p.464) wpear = wyq/(1 — 2¢?, and
for the given { = 0.2, Wpeak = 0.959w,,. Then w, = /K/m = 1.043wpeqr, giving

K = (1.043wpeqi )2m = 435,200 N/m
(¢) The value of B must first be found. From part (a) w, = 1.043wpeer = 20.86 rad/s. Also

2w, = B/m with { = 0.2 gives B = 8728 N-s/m. The overall transfer function 1s

(s) = B34k 14352
" s2 +8.344s + 435.2

The Bode plots for this system are shown below.
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(c) The specification for the alternative mounts, together with the computed damping ratios
and patural frequencies are summarized in the following table:

Mount A: (original) Kq4=K Bua=258 (=02 wy, = 20.86
Mount, B: Kp=4K, Bp=035B (=005 w,=4172
Mount C: Kec=2K, Be=2B ( =0283 w,=29.50
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Bode magnitude plots of the transmissibility force ratio H(jw) for mounts B and C
are shown below.
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The question of whether mounts B or C offer improvement depends on the nature of the
exciting forces. In general C provides higher damping and a higher resonant frequency
and may offer better performance in practice. Mount B, with its low damping shows
a very pronounced resonance at around 40 rad/s.

Problem 14.15

From Ch. 13 The impedance of an inductance is Z(s) = sL, and the impedance of a
capacitance is Z¢(s) = 1/sC. For the parallel LC circuit:
Z(s) = Zi(s)Zc(s) _ (sL})/(sC) _ Ls
P Zi(s)+ Ze(s) sL+(1/sC) LCs*+1

and for the series connection

Z(s) = Zp(s) + Zo(s) = sL+1/(sC) = L_C_’_.Ez_—i-_l
The sinusoidal input impedance Z(jw) = Z(s)|,_.
T) = T, i) = LA
(a) By inspection
(i) asw — 0,
Zy(jw) — 0

ZS(jw) -
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((ii) as w — o0,

Zp(jw) — 0

Z,(jw) — @
((iii) when w = V1/LC,

Zy(jw) =

Zs(jw) =

(b) At a frequency w = /L/C the impedances are Z.(jw) = —Jj L/C and Z.(jw) =
jy/L/C, that 1s they are conjugates.
In the parallel connection there is a common voltage across the inductance and capac-

itance. Using Kirchoff’s current law at either node net current flow into the circuit
is

i(t) = ig(t) +ic(t) = [ZLl(s) + ch(s)} sin(wt) = 0

or in other words, no net current flows into the circuit even though significant current
is flowing in the two elements and a finite voltage appears at the terminals.

In the series connection the currents through the inductor and capacitor are the same,
but the the terminal voltage is

V() = w(t) + volt) = (Z(jw) + Zo(jw)) losinfwt) = 0
that is while ve(t) and vg(t) ate both finite, they sum together to zero at the input.

When the coil has finite resistance R (in series) as well as inductance the series connection
has impedance
LCs* 4+ RCs +1

Cs

Z.(s) = Zp(s) + Zo(s) + Zr(s) = sL+ 1/(sC)+ B =

and the sinusoidal impedance is

, —j (1= LCw?) + jRCw
ZS(J("J) = —LE( CZJ

Then (i) as w — 0 Z,(jw) — oo, (ii) as w — 0 Z,(jw) — oo, and (ili) when
w=/(1/LC), Zjw)=R.
For the parallel connection
Z,(s) = (R+sL)/sC _ R+ sL
F sL+R+1/sC LCs2+RCs+1

and }
R+ jwlL

20} = A -I0w) + jRCw
Then (i) asw — 0 Zp(jw) = R, (ii) asw — 00 Z,(jw) — 0, and (iii} when w = +/(1/LC),
|Z.(j0)| = (B? + L/ C)/{Ry/C/L).
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Bode Magnitude Plot Bode Phase Plot {deerees)
1801
10000 3 ]
1603
1800 ;
1404
100 3
1204
10.1
100}
i 1 10 00 1000
1. 10. omega 08 10600. . C omega .

Problem 14.21

(a) The following Bode plots are derived from the given transfer function

0.2

H(s) =
(¢) 5%+ 6.4s + 256
Bode Magnitude Plot Bode Phase Plot {degrees)
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Any noise components with frequencies in the range of approximately 9 — 30 rad/s will
be amplified by the system.

(b) With the filter with the transfer function

0.5s+1

H(s)= —22t1
A8) = giome 1

the Bode plots are:
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Bode Magmitude Plot Bode Phase Plot {degress)
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Clearly the last case reduces the effects of the system resonance in the overall response.

Problem 14.22

{a) The transfer function between the pump output flow Q(%) and the pressure at the pump
outlet is:

R T T R TIArr S S

H(s) = (s + R)

| (b) The system frequency response is
ol

H(jw) = jol + B, |H(Gw)| = (T}t + B2, (H{jw) = tan™ =



