
Lagrange equations (from Wikipedia) 

This is a derivation of the Lagrange equations. This derivation is obviously 
above and beyond the scope of this class. Hence this is only for the very 
curious student. There are many classical references that one can use to get 
more information about this topic:  

Goldstein, H. Classical Mechanics, second edition, (Addison-Wesley, 1980) 
or  

Meirovitch, L. Principles and Techniques of Vibrations, (Prentice Hall, 
1997) 

Consider a single particle with mass m and position vector , moving under an applied 
force, , which can be expressed as the gradient of a scalar potential energy function 

: 

 

Such a force is independent of third- or higher-order derivatives of , so Newton's second 
law forms a set of 3 second-order ordinary differential equations. Therefore, the motion 
of the particle can be completely described by 6 independent variables, or degrees of 

freedom. An obvious set of variables is , the Cartesian components 
of and their time derivatives, at a given instant of time (i.e. position (x,y,z) and velocity 

(vx,vy,vz)). 

More generally, we can work with a set of generalized coordinates, qj, and their time 

derivatives, the generalized velocities, . The position vector, , is related to the 
generalized coordinates by some transformation equation: 

 

For example, for a simple pendulum of length ℓ, a logical choice for a generalized 
coordinate is the angle of the pendulum from vertical, θ, for which the transformation 
equation would be 

 

The term "generalized coordinates" is really a holdover from the period when Cartesian 
coordinates were the default coordinate system. 
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Consider an arbitrary displacement of the particle. The work done by the applied force 
is . Using Newton's second law, we write: 

 

Since work is a physical scalar quantity, we should be able to rewrite this equation in 
terms of the generalized coordinates and velocities. On the left hand side, 

 

On the right hand side, carrying out a change of coordinates[clarification needed], we obtain: 

 

Rearranging slightly: 

 

Now, by performing an "integration by parts" transformation, with respect to t: 

 

Recognizing that and , we obtain: 
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Now, by changing the order of differentiation, we obtain: 

 

Finally, we change the order of summation: 

 

Which is equivalent to: 

 

where is the kinetic energy of the particle. Our equation for the work 
done becomes 

 

However, this must be true for any set of generalized displacements δqi, so we must have 

 

for each generalized coordinate δqi. We can further simplify this by noting that V is a 
function solely of r and t, and r is a function of the generalized coordinates and t. 
Therefore, V is independent of the generalized velocities: 

 

Inserting this into the preceding equation and substituting L = T − V, called the 
Lagrangian, we obtain Lagrange's equations: 

 



There is one Lagrange equation for each generalized coordinate qi. When qi = ri (i.e. the 
generalized coordinates are simply the Cartesian coordinates), it is straightforward to 
check that Lagrange's equations reduce to Newton's second law. 

The above derivation can be generalized to a system of N particles. There will be 6N 
generalized coordinates, related to the position coordinates by 3N transformation 
equations. In each of the 3N Lagrange equations, T is the total kinetic energy of the 
system, and V the total potential energy. 

In practice, it is often easier to solve a problem using the Euler–Lagrange equations than 
Newton's laws. This is because not only may more appropriate generalized coordinates qi 
be chosen to exploit symmetries in the system, but constraint forces are replaced with 
simpler relations 
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