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Abstract—In recent years, data has played an increasingly
important role in the economy as a good in its own right. In
many settings, data aggregators cannot directly verify the quality
of the data they purchase, nor the effort exerted by data sources
when creating the data. Recent work has explored mechanisms
to ensure that the data sources share high quality data with
a single data aggregator, addressing the issue of moral hazard.
Oftentimes, there is a unique, socially efficient solution.

In this paper, we consider data markets where there is more
than one data aggregator. Since data can be cheaply reproduced
and transmitted once created, data sources may share the same
data with more than one aggregator, leading to free-riding be-
tween data aggregators. This coupling can lead to non-uniqueness
of equilibria and social inefficiency. We examine a particular
class of mechanisms that have received study recently in the
literature, and we characterize all the generalized Nash equilibria
of the resulting data market. We show that, in contrast to the
single-aggregator case, there is either infinitely many generalized
Nash equilibria or none. We also provide necessary and sufficient
conditions for all equilibria to be socially inefficient. In our
analysis, we identify the components of these mechanisms which
give rise to these undesirable outcomes, showing the need for
research into mechanisms for competitive settings with multiple
data purchasers and sellers.

I. INTRODUCTION

DATA has increasingly seen a role in the economy as an
important good. As an input to machine learning algo-

rithms, data can not only create new products and innovations,
but also be used to redesign business strategies and processes.
As the demand for data increases, we have seen the formation
of data aggregators, who collate data for either use or resale.
A fundamental information asymmetry arises between data
aggregators and data sources: how can aggregators verify the
quality of the data they purchase from data sources?

In particular, data sources often incur an effort cost to obtain
high quality data. For example, devices require maintenance
and upkeep to ensure accurate measurements, portable sensors
need to use their limited energy resources to collect and
transmit data, and human agents may need to be compen-
sated to properly perform a desired task. As such, if a
data aggregator wants a high quality data point, they must
appropriately compensate the data source. Furthermore, this
problem is complicated by the fact that the data aggregators
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cannot observe the effort exerted, and only the data received.
As such, the payments must be calculated from the data sets
alone, with no knowledge of the effort exerted or noise levels
of data points. This problem has led to the design of a variety
of mechanisms to ensure data sources provide quality data,
which we will outline in more detail in Section II.

The contribution of this paper is the study of the data
market that forms when multiple data aggregators share the
same pool of data sources. In particular, we note that data is
non-rivalrous, in the sense that it can be cheaply copied and
shared with multiple data aggregators. Since a data aggregator
does not ‘consume’ the good after purchasing it, data sources
will have an incentive to share the same data with as many
aggregators as are willing to pay. We show that the non-
rivalrous nature of data introduces a coupling between data
buyers: when a data aggregator incentivizes a data source
to produce high quality data, other data aggregators benefit.
In particular, this coupling leads to undesirable properties
of the equilibrium. In many single-aggregator formulations,
equilibria are unique and there is no social inefficiency. In
contrast, the multiple-aggregator case leads to a multiplicity
of equilibria, and social inefficiencies across all equilibria.

The rest of this paper is organized as follows. In Sec-
tion II, we discuss the related literature and contextualize
our contributions. In Section III, we introduce our model for
data sources, data aggregators, and their interactions in the
data market. In Section IV, we characterize the generalized
Nash equilibria in the data market, and identify necessary and
sufficient conditions for social ineffiency. In Section V, we
extend the results to cases where data sources do not share
their data with all data aggregators. Finally, we close with
final remarks in Section VI.

II. RELATED LITERATURE

In recent years, there has been a quickly growing body
of literature on models for data exchange and data markets.
Broadly speaking, the existing literature can be broken down
by two categories: models with a single data purchaser and
single data source, and models with a single data purchaser
and multiple data sources.

In the first category, find a class of models which study a
single data purchaser and a single data source. These works
focus on the game theoretic interactions and information
states between the two agents. In particular, these works
consider the strategies arising from direct signals, actions, and
payments, rather than indirect coupling that can arise from
multiple sources or purchasers. Some of these papers feature
multiple data sources, but these are ultimately separable into
a collection of single-source models, and, at their core, focus
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on the direct interactions between buyers and sellers of data.
In [1], optimal mechanisms for a single data source to sell to
a single buyer are developed using a signaling framework.
The authors of [2] design a menu of prices for different
data qualities, employing a screening framework. In [3], the
authors consider a single aggregator and single source, and
show how repeated interactions with noisy verification allow
for mechanisms which elicit costly effort from a data source. A
single data source charging data purchasers for queries about
customer preferences is studied in [4].

In the second category, there are a class of models which
study a single data purchaser with multiple data sources. These
works focus on capturing how the data supplied by one data
source affects another. In [5], the authors consider a single
data aggregator and multiple data sources, and show how
robustness of the sample median provides protection against
strategic data sources. In [6], the authors consider a single
data aggregator and multiple data sources in a setting with
verifiable data, and allow the data and the cost of revealing
data to be arbitrarily correlated.

There is also a new body of work in the single-aggregator,
multiple-source case, using peer prediction mechanisms, first
introduced in [7]. These techniques often use scoring tech-
niques to evaluate the ‘goodness’ of received data, and often
examine classification tasks. In [8], [9], the authors develop
mechanisms for eliciting the truth in crowdsourcing appli-
cations, while [10]–[12] consider theoretical extensions to
strengthen the original results of [7], all in the context of a
single aggregator. In [13], the authors consider a classification
problem with a single aggregator and multiple data sources,
which extends the classic peer prediction results by exploiting
correlations between the queries and query responses.

A parallel literature considers similar ideas in the regression
domain. These works design general payment mechanisms, by
which a central data aggregator may incentivize data sources
to exert the effort necessary to produce and report readings
which are deemed to be of high quality, with respect to the
estimation task the aggregator is performing. The roots of these
approaches can be traced least as far back as VCG mech-
anisms, a set of seminal results in mechanism design [14].
Indeed, numerous approaches for deciding payments based on
the actions of other agents have been proposed [15]. Here, we
again see attention given to crowdsourcing [16].

Several recent papers [3], [17]–[21] investigate new direc-
tions in this domain. In cases where, without the ability to
directly determine the effort exerted by data sources, data
buyers must design incentive mechanisms based solely on the
data available to them. In [17], whose approach we extend
here, the authors develop a mechanism which a data aggregator
can use to precisely set the level of effort a collection of
data sources exert when producing data. A similar mechanism
is explored in [18]. Extensions are considered wherein data
sources form coalitions [19], or where aggregators assess
the quality of readings using a trusted data source [20].
Meanwhile, [21] and [3] investigate dynamic settings where
data sources are repeatedly queried.

Our work is closest in spirit to the literature studying
regression problems with multiple data sources, with our key

contribution being the presence of multiple data aggregators
that are coupled in their costs and actions. To our knowl-
edge, this is one of the first papers which considers multiple
data aggregators and multiple data sources simultaneously. In
particular, we simultaneously model coupling between data
aggregators in their cost functions, coupling in the payments
to the same pool of data sources, and coupling between data
sources due to payments that depend on their peers’ data.

We suppose all data aggregators are trying to estimate the
same function and share the same pool of data sources. Addi-
tionally, we assume each data aggregator has already chosen
an estimator, and now must determine how to issue payments
to have low estimation error with their exogenously fixed
estimator. Our model builds heavily on the model introduced
in [17], which featured a single data aggregator. Our contri-
bution is an extension that models cases with multiple data
aggregators. For consistency, we will refer to data purchasers
as data aggregators, and data sellers as data sources.

Furthermore, the work in the paper is a significant extension
of our prior work [22] where we considered strategic data
sources with a specific exponential function mapping effort to
query response quality. In the present work, we characterize
equilibria and the price of anarchy for a much broader class
of games between data buyers where the data sources’ effort
functions can be any non-negative, strictly decreasing, convex,
and twice continuously differentiable function. The character-
ization we provide considers both bounded and unbounded
feasible effort sets for the data sources.

III. DATA MARKET PRELIMINARIES

In this section, we outline the models for data sources, data
aggregators, and the strategic interactions between them.

At a high level, each data aggregator collects data from
data sources to construct an estimate of a given function. In
exchange for this data, the data aggregator issues incentives
to the data sources. The data aggregators have three terms in
their cost function: 1) an estimation error term, which rewards
the data aggregator for constructing a better estimate; 2) a
competition term, which penalizes when other data aggregators
have higher quality estimates; 3) a payment term, which is the
cost incurred issuing incentives.

Each data source is able to produce a noisy sample of
the desired function. The data sources can exert effort to
reduce the variance of the data sample, and we assume the
data sources are effort-averse, i.e. data sources will prefer to
exert less effort, unless they are provided incentive by the
aggregators. As such, the data sources have two terms in their
utility function: 1) an incentive term, which rewards payments
received; 2) an effort term, which penalizes effort exerted.

The level of effort exerted and the variance of the data are
not known by the data aggregator; this private information
gives rise to moral hazard. One of the problems for the
aggregator is the task of designing incentives which depend
only on the information available to them. Another important
nuance is that data is non-rivalrous; thus, when a data source
produces a higher-quality data sample, all the aggregators
which receive this data benefit.
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In order to simplify the initial introduction of our model,
we will first assume that each data source provides data to all
the aggregators in the data market, and receives payment from
all aggregators as well. In Section V, we will outline how our
results change when this assumption is removed.

A. Overview

More formally, let S = {1, . . . , N} be the index set of
strategic data sources, and let B = {1, . . . ,M} be the index
set of strategic data aggregators. Each data aggregator desires
to construct an estimate for a given function f : D → R, where
D is a feature space. Practically, one may think of D as a
set of features the data aggregators are capable of observing,
while the mapping f encapsulates the relationship between the
observable features and the outcome of interest.

Each data source s ∈ S is able to produce a noisy sample
ys of f at the fixed point xs ∈ D. The point xs is common
knowledge among all data sources and aggregators. The vari-
ance of ys is proportional to the effort exerted by data source
s to produce the reading. Each data source s is characterized
by an effort-to-variance function σ2

s : Es → R≥0, where Es
represents the set of feasible efforts that data source s can
exert. When data source s exerts effort es ∈ Es, they produce
the data point:

ys(es) = f(xs) + εs(es) (1)

Here, εs(es) is a random variable with mean 0 and variance
σ2
s(es). The function σ2

s is common knowledge among all
data sources and aggregators. However, while the function
σ2
s is known, the effort exerted es is private. This means

that the actual variance of ys, namely σ2
s(es), is also private

information of s. We will delve into assumptions in the data
source model in greater detail in Section III-B.

Now, suppose a data aggregator is granted access to a data
set {(xs, ys)}s∈S . At this point, the data aggregator b ∈ B
processes this data to construct an estimate for f . In exchange
for this data set, the data aggregator issues payment pbs(y) to
data source s for each s ∈ S. Here, y = (y1, . . . , yN ) denotes
the data given to each member of B. Note that the payment
to s from b depends not only on the data supplied by s, but
rather depends on all data available to b.

The data aggregator then incurs loss Lb(pb, e), which will
depend on pb = (pbi )i∈S , the payments issued, as well as
e = (ei)i∈S , the effort exerted by the data sources. We will
formalize the data aggregator in greater detail in Section III-C.

The interaction of the data market proceeds in three stages.
1) Aggregators declare incentives: Each data aggregator b ∈
B commits to a payment contract pb = (pbi )i∈S . The
payments will depend on the data y shared with b, as
well as the common knowledge information x = (xi)i∈S
and functions σ2 = (σ2

i )i∈S .
2) Sources exert effort, realize and share data: In response

to pb, each data source s chooses an effort es ∈ Es. Then,
the random variable ys is realized according to (1). The
data ys is shared with each data aggregator. Note that s
has control over ys only through es. In other words, the

data source chooses the quality of data they generate, but
cannot arbitrarily manipulate the reported value of ys.

3) Aggregators construct estimates, issue payments: Each
data buyer b constructs their estimate f̂ b, issues payments
pb to the data sources, and incurs loss Lb.

For convenience, we include a table summarizing the nota-
tion throughout this paper in Table I.

B. Strategic Data Sources
As mentioned previously, each data source s ∈ S has their

own feature vector xs ∈ D, and samples the function f at
this point. We may also refer to xs as a query throughout the
text, and ys as the query response for data source s. The data
source s is characterized by the effort-to-variance function
σ2
s : Es → R≥0. We assume 0 ∈ Es so that each data source

may exert no effort in producing her reading if she desires.

Assumption 1. For each s ∈ S, the set Es ⊂ R≥0 is a closed,
connected set and contains 0.

Assumption 1 means that we consider two cases:
(i) Es = [0,∞), i.e. the data sources maximum allowed

effort is unbounded.
(ii) Es = [0, emax

s ] for some 0 < emax
s < ∞, i.e. the data

sources maximum allowed effort is bounded.
Imposing an upper-bound on the amount of a effort a data
source can exert can be used to model constraints such as
hardware limitations. As we shall see in Section IV, the im-
position of such constraints can drastically affect equilibrium
behavior in the data market.

Once the data source s exerts effort es ∈ Es, they produce
the data point ys according to (1). Again, we note that the
data source only controls the effort level es. They can only
indirectly control ys through es, and cannot report arbitrary
values as their data. We also impose the assumption that the
noise in the data is independent across data sources.

Assumption 2. For each s ∈ S , εs(es) is a random variable
with mean 0 and variance σ2

s(es). Furthermore, the random
variables {εs(es)}s∈S are independent.

Both xs and the function function σ2
s are common knowl-

edge, but the effort es and σ2
s(es), the actual variance of ys,

are private.
For convenience, we let E = E1 × · · · × EN be the joint

effort set and let σ2 = (σ2
1 , . . . , σ

2
N ) be the tuple of effort-

to-variance functions. We make the following assumptions on
the effort-to-variance mappings σ2.

Assumption 3. For each data source s ∈ S, the mapping
σs : Es → R≥0, which is the square root of σ2

s , is (i)
strictly decreasing, (ii) convex, and (iii) twice continuously
differentiable.

The assumptions correspond to the variance of the estimate
generated by data source s decreasing in the effort exerted,
with decreasing marginal returns.

Using the notation ps = (pjs)j∈B, we model each data
source with the following utility function:

us(es, ps) = E
(∑

j∈B p
j
s(y(e))

)
− es (2)
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where the expectation is with respect to the randomness in y,
the data generated by the data sources upon exerting effort e.1

Note the form of (2) implies that the data sources are risk-
neutral and effort-adverse. Additionally, the form of (2) also
implies the effort es can be normalized to be comparable to
the payments. We note that the timing of the game implies
that data sources must commit to an effort level ex-ante.

Thus, in the second stage of the game, data source s has
knowledge of the payment contracts (pb)b∈B, and chooses es
to maximize their us(es, ps), defined by (2). However, since
the utility of each data source depends on the effort exerted
by the other data sources, the payments (pb)b∈B induce a
game between the data sources. In Section III-F we will fully
characterize this game for the particular class of incentives we
introduce in Section III-D.

C. Strategic Data Aggregators

The primary objective of each aggregator is to construct
a low-variance estimate for the function f . We adopt the
following formal definition for an estimator.

Definition 1 (Estimator [17]). Let H be a family of functions
f : D → R. An estimator for H takes as input a collection
X = (xi, yi)

N
i=1 of examples (xi, yi) ∈ D × R and produces

an estimated function f̂X ∈ H.

As an example, H may be the class of linear functions
f : Rn → R, in which case one may produce an estimated
function f̂X ∈ H of f via linear regression.

Each data aggregator b ∈ B constructs his estimate for
f from the class of functions Hb, using the readings X =
(xs, ys)s∈S . We let f̂ bX ∈ Hb denote the estimate that aggre-
gator b constructs based on the readings they receive.2

Each data aggregator’s estimator is given, fixed, and com-
mon knowledge among all agents. In other words, this means
that, for each data aggregator, the process by which a data
set is turned into an estimate is exogenous. We focus on the
design of incentives once each buyer has chosen an estimator.

First, we introduce some restrictions on the class of estima-
tors allowed. The following assumption is required for us to be
able to consider the contribution of data source s to reducing
aggregator b’s estimation cost. Also, note that the functions
{hb}b∈B will be non-negative by construction.

Assumption 4. We assume the estimator for each b ∈ B
is separable, in the following sense [17]. There exists a
function hb such that for all queries x, distributions F over
D, and variances σ2 of the reported estimates y at queries

1For simplicity and as a first-step analysis, we assume that the data sources
only care about the payments received from the aggregator, and are indifferent
to which aggregators they share their data with. An interesting and practical
extension would be to consider the case where the data sources’ utility
functions are aggregator-dependent. This could arise when data sources trust
different aggregators differently, or over privacy concerns.

2In general, aggregators need not fit models of the same type—e.g., one
data aggregator may choose to generate their estimate via linear regression,
while another fits a polynomial of higher degree. Different estimator types
across data aggregators may be used to encapsulate competitive advantages
one has over another.

x = (xi)
k
i=1 in the dataset X = (x,y):

E
[(
f̂ bX (x∗)− f(x∗)

)2]
=

k∑
i=1

hb(xi,x, F )σ2
i (3)

Here, the expectation is taken across the randomness in X , as
well as across x∗ ∼ F .

For brevity, we will also define the function gb as follows:

gb(x, F, σ
2) =

∑k
i=1 hb(xi,x, F )σ2

i (4)

Let −b = B \ {b} denote the index set of aggregators
excluding b and let p−b = (pj)j∈−b be the payments of all
aggregators excluding b. Aggregator b constructs payments so
as to minimize:

Lb(pb, e) = E
[(
f̂ bX (x∗)− f(x∗)

)2
−
∑
j∈−b ζ

b
j

(
f̂ jX (x∗)− f(x∗)

)2
(5)

+ ηb
∑
s∈S p

b
s(y(e))

]
As in (3), the expectation in (5) is taken with respect to
x∗ ∼ Fb and the randomness in the query responses y. The
distribution Fb weighs the importance data aggregator b places
on accurately estimating f for different query points x ∈ D.

The scalars ζbj ∈ [0, 1] parameterize the level of competition
between aggregators b and j. When ζbj = 0, aggregator b is
indifferent to the success of j’s estimation; b interacts with
j entirely through the incentives issued to the data sources.
We note that, even when ζbj = 0 for all j and b, we can
still see degeneracies and social inefficiency arise, since data
aggregators will still be coupled through the data sources.3

The parameter ηb > 0 denotes a conversion between dollar
amounts allocated by the payment functions and the utility
generated by the quality of the various estimates that are
constructed. We make the assumption that aggregator b has
knowledge of what estimator every other data aggregator plans
to use, as well as the weighting distributions.4

D. Structure of Payment Contracts

Throughout this paper, we will assume a particular form for
the payment contracts the aggregators offer to the data sources.
Similar to previous notation, we let −s = S \{s}. For a given
b ∈ B and s ∈ S we assume that pbs is of the form:

pbs(y
b) = cbs − abs

(
ybs − f̂ bX−s

(xs)
)2

(6)

Here, abs and cbs are nonnegative scalars. Also, X−s =
(x−s, y−s) denotes b’s data set excluding s. Namely x−s is the
data features for all sources excluding s and y−s = (yi)i∈−s
is the query responses to aggregator b, excluding s.

3This is a stylized formulation of how competition can affect different data
aggregators, but we see interesting results arise even in this simple model.
In the future, we hope to consider more extensive models of competition for
data aggregators.

4This is a fairly strong assumption given that competing data aggregators
are unlikely to inform their competitors how they intend to process the data
supplied by the sources. Our work isolates how coupling between aggregators
through data sources affect the data market; an interesting avenue for future
work is to consider extensions with different information sets, and characterize
the existence and severity of market inefficiencies in these various situations.
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Note that these payments do not directly depend on the level
of effort that any of the data sources exert, since the data
aggregators do not have a means to directly observe these
values. Rather, the payment to source s from aggregator b
depends on the b’s best estimate for f(xs) excluding s’s data,
namely, f̂ bX−s

(xs). The payments only depend on the data
reported to them, and can be calculated by the aggregator.

Similar payment contracts are common in the literature [17],
[18], [20], in part because of their intuitive structure. The
aggregator constructs an unbiased estimate of what data source
s should report, and this estimate is not influenced by the
data of s. This estimate is used to overcome the problem of
moral hazard: all data sources are appropriately incentivized
to reduce the variance of their reported data accordingly.

Given this payment structure, each data aggregator’s choice
of payment contracts reduces to choosing parameters (cb, ab)
where cb = (cbi )i∈S ∈ RN and ab = (abi )i∈S ∈ RN .

In the single aggregator case (when M = |B| = 1), it was
shown in [17] that payments of the form in (6) induce a game
between the data sources for which there is a unique dominant
strategy equilibrium. That is, for each collection of parameters
(cbi )i∈S and (abi )i∈S , the data sources each exert a unique level
of effort. The authors develop and algorithm by which the
single aggregator may select these parameters such that (i)
data sources are incentivized to exert any level of effort that
the aggregator desires, and (ii) data sources are compensated
at exactly the value of their effort, i.e. E[ps(y(e))] = es.

This paper’s contribution is the study of how pricing
schemes of this form perform in the more general case where
there is more than one data aggregator (when M = |B| > 1),
and data aggregators may compete with each other. The goal
is to model multiple aggregators as strategic decision-makers
in competition, and understand the data market where these
agents interact. Thus, while prior work captured moral hazard,
we extend this model to capture competition and the non-
rivalrous nature of data.

E. Formulation of Aggregator Optimization Problem

As mentioned previously, the aggregators hope to minimize
their costs, as given in (5). They do so by choosing the
parameters (cb, ab). In this section, we will describe the
aggregator’s optimization problem in more detail, and specify
constraints that the parameter choice must satisfy.

The first constraint is individual rationality (IR). Individual
rationality requires that each data source’s utility is non-
negative ex-ante [24].5 This ensures that rational data sources
are willing to exert effort to produce the data. The second
constraint is non-negative payments from each data aggregator.
Given that there are multiple aggregators, we introduce a
constraint that the payment each aggregator offers to each s
is non-negative ex-ante.6

5Alternatively, a data source’s utility may be compared to an outside option;
for simplicity, we model the outside option as having zero utility.

6Negative payments could be handled via exchangeable utilities among
the data aggregators or via a trusted third–party to manage the allocations;
however, in an effort to ensure clarity, we leave these scenarios aside.

We’ll introduce some notation for brevity here; we let pbs
denote the expected value of the payment pbs:

pbs((c
b
s, a

b
s), e) = E[pbs(y)]

= cbs − abs
(
σ2
s(es) + gb(x−s, δxs

, σ2
−s(e−s))

)
(7)

where δx denotes the probability measure with mass one at x
and e = (ei)i∈S . Similar to previous conventions, we define:

ps((cs, as), e) =
∑
b∈B pbs((c

b
s, a

b
s), e)

Thus, the IR constraint for each data source s is formalized:

ps((cs, as), e) ≥ es (8)

Similarly, the non-negativity constraint for each data source s
and data aggregator b is given by:

pbs((cs, as), e) ≥ 0 (9)

The third constraint is incentive compatibility (IC). Intu-
itively, IC states that when a data source is acting rationally
and choosing actions to maximize their utility, they behave
as the data aggregators intended. When there is a single
aggregator, IC is typically enforced by the aggregator finding
the effort that minimizes their cost, e∗s , and then designing ps
such that e∗s = arg maxes∈Es ps((cs, as), e)− es.7

In the competitive setting, IC for one aggregator is defined
holding all other aggregators payments fixed. Each of the data
aggregators make their choice of payment subject to the fact
that data source s selects effort according to

maxes∈Es
∑
j∈B pjs((c

j
s, a

j
s), e)− es (10)

Note that the payment each source receives depends on the
efforts exerted by the other data sources. Thus, for each set
of contracts offered by the aggregators, a game is induced
between the data sources to determine how much effort they
will exert. The aggregators compete by issuing incentives,
which influences the equilibrium behavior of this game.

From the perspective of the data aggregators, the IC con-
straint states the desired effort level e∗s must be a dominant
strategy for data source s; that is, e∗s is the utility-maximizing
action for s regardless of the actions taken by other sources
−s. Formally, the following must hold for all e−s ∈ E−s:

e∗s = arg max
es∈Es

ps((cs, as), (es, e−s))− es

With these constraints, we formulate a bilevel optimization
problem for each aggregator. Consider a fixed aggregator
b ∈ B. Given a fixed action profile for all other buyers −b,
i.e. given (c−b, a−b), aggregator b aims to solve:

min
(cb,ab)

Lb((cb, ab), (c−b, a−b))

s.t. e∗s = arg max
es∈Es

ps((cs, as), (es, e−s))− es,

∀e−s ∈ E−s, ∀s ∈ S
ps((cs, as), (e

∗
s, e
∗
−s)) ≥ e∗s, ∀s ∈ S

pbs((cs, as), (e
∗
s, e
∗
−s)) ≥ 0, ∀s ∈ S

cbs ≥ 0, abs ≥ 0, ∀s ∈ S

7For notational brevity, we will use argmax as a function rather than a set-
valued function throughout this paper; this is well-defined by Assumption 3.
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where Lb is defined in (5).
Note that this problem actually has N optimization prob-

lems as constraints, making is a difficult bilevel program.
However, we will reformulate the aggregator’s problem to a
more manageable non-linear program in the sequel. This is
possible, in part, due to the nice properties of the payment
contract structure introduced in Section III-D; this tractability
motivates the use of payment contracts of that particular form.
Next, we analyze the induced game between the data sources
and simplify the aggregator’s optimization problem.

F. Induced Equilibrium Between Data Sources

To ensure a notion of incentive compatibility in equilibrium,
we show there is a well-defined mapping from the parameters
(c, a) chosen by the aggregators to the equilibrium e∗.

Definition 2. For fixed payments {pbs}s∈S,b∈B, we say e∗ =
(e∗1, . . . , e

∗
N ) is an induced Nash equilibrium if for each data

source s ∈ S:

e∗s = arg maxes∈Es E
[∑

j∈B p
j
s(y(es, e

∗
−s))

]
− es (11)

If (11) holds for all e−s ∈ E−s rather than just at e∗−s, then
we say that e∗ is an induced dominant strategy equilibrium.

Suppose now that we have a set of payments of the form
discussed in Section III-D, characterized by parameters (c, a).
Data source s chooses effort e∗s according to:

e∗s=argmax
es∈Es

[∑
b∈B

cbs−abs
(
σ2
s(es)+gb(x−s,δxs,σ

2
−s(e−s))

]
−es

(12)

for each choice of e−s ∈ E−s made by the other data
sources. It is straight forward to verify that (12) is a concave
maximization problem which admits a unique globally optimal
solution. This follows from our assumption that σ2

s is convex
and decreasing, recalling that abs ≥ 0 for each b ∈ B and
observing that Es is a convex set. Moreover, note that the
choice of this optimal effort e∗s is not affected by the choice
of e−s, since each of the gb(x−s, δxs

, σ2
−s(e−s)) terms enters

(12) as a constant from the perspective of s. Thus, each choice
of contract parameters selected by the aggregators leads to an
induced dominant strategy equilibrium for the data sources. In
particular, note that the choice of

as =
∑
j∈B a

j
s (13)

fully characterizes the level of effort that data source s exerts
in equilibrium. We reiterate that the constraints on the aggre-
gator’s optimization problems will ensure the chosen contract
parameters respect the IR and non-negativity constraints.

Next, we define µs : R>0 → R≥0 to be the implicitly-
defined map such that µs : as 7→ e∗s returns the solution to
(12) for a given choice of as ∈ R>0. In the following section,
we will use this mapping to simplify the optimization problem
facing each of the aggregators.

Definition 3. For a given data source s ∈ S, let:

as = min {as ∈ R>0 : µs(as) = 0}. (14)

When Es = [0, emax
s ] with 0 ≤ emax

s < ∞, define
As = [as, ās] where

ās = min {as ∈ R>0 : µs(as) = emax
s } (15)

On the other hand, when Es = R≥0, define As = [as,∞).

The above definition implies as is the minimum value of as
that the aggregators must offer data source s to ensure they
do not have incentive to exert negative effort.8 Similarly, if
the aggregators increase as past ās, source s cannot further
increase the level of effort they exert, and the mapping µs
ceases to be meaningful. Thus, when reformulating each buy-
ers optimization in the following section we will additionally
constrain as ∈ As for each s ∈ S.

The following lemma provides properties on the mapping
µs which are needed to prove existence of equilibria for the
game between aggregators in the first stage.

Lemma 1. Fix a data source s ∈ S. Then the mapping µs(as)
is continuous and strictly increasing in as for all values of
as ∈ As.

Proof. The first-order optimality condition for the data source
is given by:

2asσs(es)
d
des
σs(es) + 1 = 0 (16)

By assumption σs is strictly decreasing and convex so that
(16) has a unique solution for all as ∈ As. By definition, this
solution is µs(as). Implicit differentiation of (16) then yields:

dµs

das
=
(

2(as)
2
((

d
dµs

σs(µs)
)2

+ σs(µs)
d2

d2µs
σs(µs)

))−1
where we suppress the dependence of µs on as. The right-hand
side of the above equation is strictly positive by Assumption 3.
Continuity follows directly by Assumption 3.

G. Reformulation of Buyers Optimization Problem

Finally, using our previous analysis and assumptions, we re-
formulate the optimization problem faced by each aggregator.
This reformulation will simplify our analysis of equilibrium
behavior in the data market, and lend economic interpretability
to the results presented in Section IV.

Previously, we assumed that aggregator b’s estimator is
separable in Assumption 4. This allows us to write the loss
function of b as:

Lb((cb, ab), (c−b, a−b)) =
∑
i∈S hb(xi, x, Fb)σ

2
i (µi(ai))

−
∑
j∈−b ζ

b
j

∑
i∈S hj(xi, x, Fj)σ

2
i (µi(ai))

+ ηb
∑
i∈S
(
cbi − abi

[
σ2
i (µi(ai))

+
∑
l∈−i hb(xl, x−i, δxi)σ

2
l (µl(al))

])
Recall that x = (xi)i∈S is fixed and common knowledge.
Thus, we can replace each of the evaluations of the hj’s with
constants. Towards this end, for each i, l ∈ S and b ∈ B, we
define:

βbi = hb(xi, x, Fb) (17)

8This situation could correspond to source s obfuscating their data, for
example. We have restricted E to the non-negative orthant, so we will add
constraints to ensure we are operating within the domain of our model.
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ξbi,l =

{
hb(xl, x−i, δxi

) i 6= l
1 i = l

(18)

Note that each ξji,l ≥ 0, by definition of the {hb}. In addition,
for each i ∈ S and b ∈ B, define:

γbi = βbi −
∑
j∈−b ζ

b
jβ

j
i (19)

Since we defined ξ such that ξbi,i = 1, we can write:

Lb((cb, ab), (c−b, a−b)) =
∑
i∈S γ

b
i σ

2
i (µi(ai))

+ ηb
∑
i∈S

(
cbi − abi

[∑
l∈S ξ

b
i,lσ

2
l (µl(al))

])
Similarly, the expected payment for any data source s and data
aggregator b is given by:

pbs((c
b
s, a

b
s), e) = cbs − abs

(∑
i∈S ξ

b
s,iσ

2
i (ei)

)
Before proceeding, we provide an interpretation of the con-
stants introduced above. The constant βbs denotes the rele-
vance of data sampled from the point xs when constructing
aggregator b’s estimate, given the distribution of all of the
data sources. The parameter γbs corresponds to the level of
demand that aggregator b ∈ B has for high-quality data from
source s ∈ S, factoring in the benefit this data supplies to
the competitors of b. In other words, γ parameters capture
the effects of the non-rivalrous nature of data. The parameter
ξbs,l denotes a measure of coupling that exists between the
payment contracts pbs and pbl . In the case of a single aggregator
(i.e. [17]), this coupling did not prove problematic. In contrast,
when there are multiple aggregators, each aggregator has an
incentive to try and exploit this coupling, as shall become
clear in our ensuing analysis. This coupling will play a central
role in determining the existence and efficiency of equilibrium
behavior in the data market.

Collecting the various expressions we have introduced,
aggregator b’s optimization problem can be re-written as:

min
(cb,ab)

Lb((cb, ab), (c−b, a−b)) (20)

s.t.
∑
j∈B

[
cjs − ajs

(∑
i∈S

ξjs,iσ
2
i (µi(ai))

)]
≥ µs(as), ∀s ∈ S

cbs − abs

(∑
i∈S

ξbs,iσ
2
i (µi(ai))

)
≥ 0, ∀s ∈ S

as ∈ As, ∀s ∈ S abs ≥ 0, ∀s ∈ S

Without loss of generality, we let ηb = 1, by normalizing the
γbs accordingly. Note that the constraint cbs ≥ 0 can be omitted,
in light of the constraint cbs−abs

(∑
i∈S ξ

b
s,iσ

2
i (e∗i )

)
≥ 0, since

each ξbs,i ≥ 0 and abs ≥ 0.

IV. GENERALIZED NASH EQUILIBRIA IN THE DATA
MARKET

It is important to note that the constraints each aggregator
faces in her optimization problem (20) depend on the actions
taken by the rest of the aggregators in the data market. In
particular, in order to ensure that the IR and IC constraints are
maintained in equilibrium, we require an equilibrium concept
which allows each aggregator’s admissible action space to

depend on the choice of contract parameters selected by the
other aggregators in the data market. Thus, we will employ
the notion of a generalized Nash equilibrium [23] to study
competitive outcomes in the data market, which is a natural
extension of the typical notion of Nash equilibrium to this
setting.

Let Zb ⊂ R2N be aggregator b’s actions space; that is, zb =
(cb, ab) ∈ R2N where cb = (cbs)s∈S and ab = (abs)s∈S . Each
aggregator b ∈ B solves a parametric nonlinear programming
problem given by

Pb(z
−b) := min

zb
{Lb(zb, z−b) : zb ∈Mb(z−b)} (21)

where Mb(z−b) = {zb : kbj(z
b, z−b) ≥ 0, ∀ j ∈ J b} ⊂ Zb

with J b = {1, . . . , |J b|} a finite set indexing the constraint
functions of aggregator b. Note that, unlike in the classic
definition of a Nash equilibrium, the admissible action space
of aggregator b depends on z−b, the actions of −b = B \ {b}.

We say {Pb(·)}b∈B is a generalized Nash (GN) equilibrium
problem. A GN equilibrium is defined as follows.

Definition 4. A point z = (z1, . . . , z|B|) ∈
∏|B|
b=1Zb is said

to be a GN equilibrium for {Pb(·)}b∈B if for all b ∈ B, zb

solves Pb(z−b).

We now analyze the game between the aggregators utilizing
the notion of a GN problem and GN equilibrium. We will
characterize the existence and uniqueness of GN equilibria
in two scenarios. In Section IV-A, we will consider the
case where the effort spaces of data sources are unbounded,
i.e. Es = R≥0. In Section IV-B, we will characterize the case
where each data source has an upper bound on the level of
effort they can exert, i.e. Es = [0, emaxs ). In Section IV-C,
we will then address the social efficiency of the equilibria
identified in Section IV-A. A similar analysis of the equilibria
identified in Section IV-B can be found in Appendix B.

Before preceding to out main results, we provide a technical
lemma that will have a central role in our ensuing analysis and
introduce some notation which will simplify the statement of
our results. For compactness, for a given set of a parameters
we define µ(a) = (µs(a))s∈S . (Recall that a is the sum of a
parameters, as defined in Equation (13).)

Lemma 2. Suppose z = (zb)b∈B, where zb = (cb, ab), is a
GN equilibrium for the game {Pb(·)}b∈B defined by (20). Then
for each s ∈ S:∑

j∈B c
j
s −

∑
j∈B a

j
s

(∑
i∈S ξ

j
s,iσ

2
i (µi(ai))

)
− µs(as) = 0

(22)
In other words, the IR constraint is always binding in equilib-
rium, and the expected payment to data source s is equal to
the effort exerted in equilibrium: ps((cs, as), µ(a)) = µs(as)

Proof. Suppose that there is an equilibrium in which the IR
constraint is not binding for some data source s. Then, there
must a exists an aggregator b whose non-negativity constriant
corresponding to source s is also not binding. Thus, this cannot
be an equilibrium as aggregator b can unilaterally improve
their payoff by decreasing cbs without causing any of the
constraints to be violated, contradicting the assertion that the
given selection of parameters is an equilibrium.
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Notation Meaning Defined or First Used in Equation
s index of data source –
S index set of data sources –
b index of aggregator –
B index set of aggregators –
pbs expected payment from aggregator b to source s (7)
abs linear term in pbs; used to adjust level of effort es in equilibrium (6)
as vector containing the a parameters offered to source s by the members of B –
cbs constant term in pbs; used to ensure incentive compatibility in equilibrium (6)
cs vector containing the c parameters offered to sources s by the members of B –
as sum of a parameters offered to source s across all members of B (13)
as mimimum value of as required to ensure source s does not exert negative effort (15)
as minimum value of as at which data source s exerts her maximum effort (14)
As [as,as], the allowable range of as –
µs implicit map which returns the equilibrium value of es as a function of as –
ζbj level of competition between j, b ∈ B (5)
βb
s relevance of data from xs in constructing aggregator b’s estimator (17)
γbs aggregate demand for es from b (19)
γs sum of demand for data source s across all members of B (23)
ξbs,l coupling between pbs and pbl (36)

TABLE I: Notation Reference Chart

The result of Lemma 2 is a well-known result in contract
design—that is, the individual rationality constraint always
binds for the optimal contract [24]. As shall become clear
in our analysis in the following sections, the equality (22)
forms an implicit constraint that appears in each of the
aggregators’ optimizations, which will be directly responsible
for the degeneracy observed in the data market. Roughly
speaking, while the a parameters selected by the aggregators
determine the level of effort that the data sources will exert,
the c parameters determine what portion of this effort each
aggregator is expected to compensate.

For each s ∈ S, define:

γs =
∑
j∈B γ

j
s (23)

which can be interpreted to be the total demand for high
quality data from data source s. Next, we define:

cs =
∑
j∈B

cjs qbs(a) = abs

(∑
i∈S

ξjs,iσ
2
i (µi(ai))

)

qs(a) =
∑
j∈B

qjs(a) + µs(as)

Note that Lemma 2 implies that if (c, a) is an GN equilibrium
in the game between the aggregators then cs = qs(a) will
hold for each s ∈ S. Moreover, the non-negativity constraints
in the game between the buyers will hold only if cbs ≥ qbs(a)
for each s ∈ S and b ∈ B.

A. Unbounded Effort Spaces

Let us first consider the case where there is no upper bound
on the effort the data sources may exert, i.e. Es = R≥0.

Theorem 1. Consider the game {Pb(·)}b∈B, where each
aggregator’s objective is to solve the optimization in (20).
Suppose that for each s ∈ S, Es = R≥0 and γs ≥ as. Further,
suppose that γji > 0, ∀ i ∈ S, j ∈ B. Then, there is either
no GN equilibrium or an infinite number of GN equilibria.
Moreover, if (c̄, ā) is a GN equilibrium, then the following
conditions hold:

1) The set of infinite GN equilibria is given by:{
(c, a) : a = ā, cs = qs(ā), cbs ≥ qbs(ā), ∀s,∀b}

That is, the a parameters selected by the aggregators are
the same across each GN equilibrium, and all degeneracy
lies in the equilibrium c parameters which lie in the |B|-
dimensional convex polytope defined above.

2) The effort exerted by each data source is the same in
each GN equilibrium and the efforts constitute a unique
induced dominated strategy equilibrium between the data
sources. More precisely, each data source exerts effort
µs(ās) in all GN equilibria.

Before going ahead with the proof of the theorem, we
discuss its hypotheses and implications. The hypothesis that
γs ≥ as implies that there is enough demand for the data from
source s such that she does not have incentive to exert negative
effort in equilibrium. Together, the aggregators will provide
sufficient incentive to s so that s accepts each of the contracts
offered to her, and truthfully report her query-response. When
we investigate the case where s only provides readings to a
subset of the aggregators in Section V, only the relevant subset
of aggregators must maintain this constraint. This condition
places a restriction on what subsets of incentives from the
aggregators each data source is willing to accept.

As we discovered in Section III-F, the a = (ab)b∈B parame-
ters selected by the aggregators uniquely determine how much
effort the data sources exert in equilibrium. Intuitively, the fact
that the a parameters are constant across all GN equilibria
means that, when GN equilibria do exist in the game between
the aggregators, the aggregators have agreed to incentivize the
data sources to each exert a particular level of effort. The proof
of the theorem will shed some light on how this unique choice
of a parameters is selected when GN equilibria exist, and also
demonstrate what ‘goes wrong’ in cases where the aggregators
cannot agree on how much effort to incentivize the sources to
exert. In the latter case, no GN equilibrium solution exists in
the game between the aggregators. Further commentary on this
point is provided after the proof of Theorem 2.
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Meanwhile, for a fixed profile of a parameters, the c =
(cb)b∈B parameters determine how much of this effort each
aggregator is responsible for compensating in expectation.
Even when aggregators are able to agree on how much effort
to incentivize from the data sources and select the unique
GN equilibria choice for a, there is a non-uniqueness in
the c parameters in equilibrium. This implies that there is
a fundamental ambiguity in who will fund the exertion of
the data sources. In the extreme case, it is possible for one
aggregator to pay for the entirety of the expected compensation
offered to the data sources, while the other aggregators pay
nothing in expectation.

Proof of Theorem 1. By Lemma 2, we have that:

cbs =
∑
j∈B a

j
s

(∑
i∈S ξ

j
s,iσ

2
i (µi(ai))

)
+ µs(as)−

∑
j∈−b c

j
s

(24)
Plugging in this constraint, the cost function for aggregator b
can be expressed as:

L̃b(ab, (c−b, a−b)) =
∑
i∈S

(
γbi σ

2
i (µi(ai))

+
∑
j∈−b

[
aji

(∑
l∈S ξ

j
i,lσ

2
l (µl(al))

)
− cji

]
+ µi(ai)

)
By swapping the roles of i and l in the middle term above,
aggregator b’s cost can be decomposed into the sum of costs
for each data sources. We define:

L̃bs(a
b
s, (c

−b, a−b)) =
(
γbs +

∑
j∈−b

∑
l∈S a

j
l ξ
j
l,s

)
σ2
s(µs(as))

−
∑
j∈−b c

j
s + µs(as)

Then aggregator b’s optimization problem reduces to:

min
ab

∑
s∈S L̃

b
s(a

b
s, (c

−b, a−b))

s.t.
∑
j∈−b

[
ajs

(∑
i∈S ξ

j
s,iσ

2
i (µi(ai))

)
− cjs

]
+ µs(as) ≥ 0

as ∈ As, abs ≥ 0

Note that the cost does not depend on cbs, for any s. We com-
plete the argument by ignoring the constraints and showing
that the constraints are satisfied for the set of equilibria we
characterize.

Differentiating the cost with respect to abs and applying (16)
and ξjs,s = 1 for all j, we have that:

Dabs
L̃bs = 1

as

(
abs − γbs −

∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s

)
Das

µs

where Dx ≡ ∂
∂x . Applying Lemma 1, which states Dasµs >

0, we get the following conditions:


Dabs

L̃bs < 0, if 0 ≤ abs < γbs +
∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s

Dabs
L̃bs = 0, if abs = γbs +

∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s

Dabs
L̃bs > 0, if abs > γbs +

∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s

Hence, the abs that minimizes aggregator b’s cost satisfies:

abs = γbs +
∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s (25)

Performing this analysis for all combinations of s ∈ S and
b ∈ B yields a system of M × N equations with M × N
unknowns, of the form (25).

Let a denote a column vector with entries aji and let γ
denote a column vector containing all the terms of the form
γji for each i ∈ S and j ∈ B. Then, (25) can be written as the
system of equations given by:

a = Ξa+ γ (26)

Here, Ξ is a non-negative matrix whose entries are composed
of the ξji,l values such that (26) expresses the set of equality
constraints defined by (25) for all s ∈ S and b ∈ B. To solve
this reduced game, it suffices to find a solution to (26) such
that ai ∈ Ai and aji ≥ 0 for all i ∈ S and j ∈ B.

Let us consider first solutions to the system of equations
(26). Systems of equations of this form are well studied in
the economics literature, as they are of the form specified by
the celebrated Leontief input-output model. It has been shown
that such systems of equations have a non-negative solution
if and only if ρ(Ξ) < 1, where ρ(Ξ) is the spectral radius of
Ξ [25]. Moreover, if such a solution exists, it must be unique.

Thus, if ρ(Ξ) < 1, inversion of the (I − Ξ) matrix yields
the equilibrium a, and, by Lemma 2, we can pick any c such
that for each s ∈ S, b ∈ B,

cbs ≥ abs
(∑

l∈S ξ
b
s,lσ

2
l (µl(al))

)
(27)

and (24) hold.
If ρ(Ξ) ≥ 1, there will not exist a non-negative solution and

there is no point (c, a) that simultaneously optimizes (20) for
all b ∈ B. Finally, we demonstrate that none of the solutions
to (26) and corresponding c values defined above violate the
constraint as ∈ As = [as,∞). By inspecting equations of the
form (25), we see that as ≥ γs ≥ as, and thus the constraints
remain satisfied. It follows that there is either a unique set
of a parameters defining a GN equilibria for the reduced
game between the aggregators, otherwise there is no GN
equilibrium. Moreover, in the case that an equilibrium choice
of a does exist, by inspection we see that the polytope of c
parameters defined in the statement of the theorem constitute
GN equilibria for the full game.

It is interesting to note that the existence of GN equilibria
depends solely on the value of the ξbs,l parameters; it does
not depend on the magnitude of the γbs parameters (given that
they are large enough to ensure participation of all parties).
This implies that the existence of GN equilibria follows from
the form of the contract mechanisms, and does not depend
on whether or not there are solutions that are beneficial to all
parties involved.

B. Bounded Effort Spaces

Let us now consider the case where the data sources’ effort
space is upper-bounded, i.e. Es = [0, emax

s ], 0 ≤ emax
s <∞.

Theorem 2. Consider the game {Pb(·)}b∈B where each aggre-
gator’s objective is to solve the optimization in (20). Suppose
that for each s ∈ S , Es = [0, emax

s ] with 0 ≤ emax
s < ∞

and that γji > 0 for all i ∈ S, j ∈ B. There is an infinite
number of GN equilibria z = (zb)b∈B. Moreover, the following
statements hold:
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1) There may exist two GN equilibria (c1, a1) and (c2, a2)
such that a1 6= a2;

2) If (c̄, ā) constitutes a GN equilibrium then the following
set of parameters also constitute GN equilibria:{

(c, a) : a = ā, ∀s ∈ S, b ∈ B, cs = qs(ā), cbs ≥ qbs(ā)
}

3) While the data sources may exert different levels of effort
across different equilibria, each collection of a parame-
ters chosen by the aggregators still induce a dominanted
strategy equilibrium between the data sources.

Proof. Following the proof of Theorem 1, the problems Pb(·)
can be reduced to the optimization problem

P̃b(z
−b) := minab

{
L̃b(ab, z−b) : ∀s ∈ S,as ∈ As, ab ≥ 0

}
To show existence, we show that the game defined by
{P̃b(·)}b∈B satisfies the assumptions of Theorem 5, which is
originally from [26] and can be found in the Appendix.

First, we note that the objective function of each buyer
is continuous in each of its arguments. Indeed, Assumption
3 ensures that σ2

s is continuous and Lemma 1 ensures the
map µs is continuous for each s ∈ S . Continuity of the
objective function follows by recalling that the composition
of continuous maps yields a continuos map. Next, for each
j ∈ B, the constraints defining M−j(z−j) are continuous,
and thus the correspondence z−j 7→ M−j(z−j) is upper
semi-continuous (indeed, even continuous). Continuing with
the analysis from Theorem 1, it is easy to see that in the
case where we constrain ai ∈ Ai, the best response set for
aggregator b is defined by the following conditional statements
for each s ∈ S:

abs = as −
∑
j∈−b a

b
s if T bs (a−b) < as

abs = γbs +
∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s if T bs (a−b) ∈ As

abs = as −
∑
j∈−b a

j
s if T bs (a−b) > as

(28)

where T bs (a−b) = γbs +
∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s +

∑
j∈−b a

j
s.

Thus, the best response set for aggregator b is always a
singleton which in turn implies it is always contractable.
Further, each best response mapping BRb : a−b 7→ ab is
continuous in a−b. Hence,

min
ab

Lb(ab, a−b) = Lb(BRb(a−b), a−b) (29)

and thus the mapping a−b 7→ minab L
b(ab, a−b) is continuous

since Lb and BRb are continuous and the composition of
continuous maps is continuous. Thus, by Theorem 5 there
exists a GN equilibrium for the reduced game between the
aggregators. As in the proof of Theorem 1, we see that for any
collection of a parameters that constitute a GN equilibrium for
this simplified game, any collection of c parameters that lie in
the convex polytope defined in the statement of the theorem
constitute a GN equilibrium for the full game.

We now remark on why there are always GN equilibria
to the game between the aggregators when each source can
exert a finite amount of effort (i.e. Theorem 2), but there
may not be a GN equilibrium when the sources are allowed
to exert infinite effort (i.e. Theorem 1). Referring to (26),
consider the case where ρ(Ξ) = k < 1 and GN equilibria

exist. Suppose we replace Ξ in (26) with αΞ, where α > 1,
and note that ρ(αΞ) = αρ(Ξ). As α is increased towards
1
k , the matrix (I − αΞ) gets closer to becoming singular,
and the corresponding solution to the system of equations,
a, approaches infinity. This implies the data sources exert an
infinite amount of effort in equilibrium.

Intuitively, this corresponds to the coupling between the
payment contracts approaching some critical limit, past which
point no GN equilibria exist. However, in the case where the
data sources are constrained to exert a finite amount of effort,
this run-away behavior is not possible, and GN equilibria
always exist. While the constraints bounding the effort the
data sources may exert ensure the existence of GN equilibria,
their activation and inactivation may lead to a degeneracy in
how much effort each data source exerts in equilibrium.

Note that, in Theorem 1 and Theorem 2, we assume that
either all of the data sources are constrained in their effort, or
all unconstrained in their effort. In the case where some data
sources are constrained and others unconstrained, the task of
determining existence of equilibria to the game becomes a
combinatorial endeavor. We exclude the analysis of this case,
as it is largely an algebraic exercise and lends little insight to
the broader problem.

C. Conditions for Social Inefficiency
The question of equilibrium efficiency or quality arises

naturally in game theoretic settings. In this section, we identify
necessary and sufficient conditions under which the equilibria
are socially inefficient; as we will see in Theorem 3, as soon
as any non-diagonal ξ parameter is non-zero, there will be
social inefficiency.

Due to the wide variety of estimators data aggregators can
use, as well as effort-to-variance functions that characterize
data sources, it is difficult to provide interesting general
bounds on the price of anarchy, a widely used metric for
the inefficiency of equilibria [27]. However, when both are
specified, the price of anarchy can be explicitly calculated [22].

In this section, we will focus our attention on the case where
the data sources are unconstrained in the effort they exert,
i.e. when Es is unbounded, as the results in this case provide a
clearer intuition for how our chosen class of mechanisms give
rise to inefficiencies. However, in the interest of completeness,
in Appendix B the result is extended to the case where data
sources are effort-constrained.

Let us denote by e the vector denoting the level of effort
the data sources exert. The social cost is defined as the sum
of the cost experienced by all parties.

Definition 5 (Ex-ante Social Cost). Suppose that ηj = 1 for
each aggregator j ∈ B. We define the ex-ante social cost to
be the sum of the utility functions of all the data aggregators
and data sources—that is:

L(e) =
∑
j∈B

(
E
[(
f̂ jXj

(x∗)− f(x∗)
)2−∑

k∈−j ζ
j
k

(
f̂kXk

(x∗)− f(x∗)
)2])

+
∑
s∈S es (30)

Note that this sum does not include any of the payments
made in the marketplace, as they are simply lossless trans-
fers of wealth. The fact that ηj = 1 for each j ∈ B
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ensures that these transfers of wealth are lossless from a
utility perspective—i.e. the aggregators and sources value the
payment equally. However, this is simply a rescaling and,
more importantly, it allows us to isolate the social loss due
to the mechanism, and ignore any losses due to differential
preferences in payment currency. Indeed, note that the social
cost only depends on the effort exerted by the sources.

The following result states that there is always a unique
level of effort that minimizes the social cost.

Lemma 3. Suppose that γji > 0, ∀j ∈ B and ∀i ∈ S. There
is a unique minimizer of L(e).

Proof. The ex-ante social cost can be re-written as L (e) =∑
i∈S
∑
j∈B γ

j
i σ

2
i (ei) +

∑
i∈S ei. By Assumption 3 and the

assumption that γjs > 0 for some j ∈ B, D2
esL(e) is strictly

positive. In addition, DesL(e) does not depend on ei for i ∈
S \ {s}. Hence, D2

eL has positive entries on the diagonal and
entries of zero everywhere else so that it is positive definite
which, in turn, implies L is strictly convex. Thus, since E is
a convex set, L has a unique minimizer on E .

The price of anarchy is defined for each Nash equilibrium
as the ratio of the social cost under the Nash equilibrium to
the socially optimal cost.

Definition 6 (Ex-ante Price of Anarchy). The ex-ante price
of anarchy is given by PoA(e) = L(e)

L(ê) , where ê ∈ E is the
minimizer of L.

Since ê is unique minimizer of L, for all e 6= ê we must
have that PoA(e) > 1. Intuitively, the larger PoA(e), the
more socially inefficient the solution is. With this metric in
mind, we provide necessary and sufficient conditions for the
game between the aggregators to yield a socially efficient
outcome, in the case that the effort space for each data source
is unbounded.

Theorem 3. Suppose γji > 0, ∀i ∈ S, ∀j ∈ B. Further
suppose that Es = [0,∞) for each s ∈ S. Then, there
exists a GN equilibrium to the game {P b(·)}b∈B between the
aggregators for which the price of anarchy is equal to one if
and only if for each j ∈ B and each i, l ∈ S such that i 6= l
we have that ξji,l = 0.

Proof. When there is no GN equilibria of the aggregators’
game, the proof is trivial. On the other hand, when there is
GN equilibria we have that

DesL(e) = 2γsσs(ês)
d
des
σs(ês) + 1 = 0. (31)

Since L is strictly convex, solving the first order conditions in
(31) yields the global minimizer. Just as with (16), the solution
to (31), ês ∈ R+, is implicitly defined by µ̂s : γs 7→ ês.

Moreover, at a GN equilibrium, we have
2asσs(es)

d
des
σs(es) + 1 = 0. Thus, as a consequence

of Lemma 1, the data sources exert ês ∈ R+ if and only
if ai = γi for all i ∈ S. By the proof of Theorem 1 an
equilibrium choice of the parameters (c, a) must satisfy:

ai = γi +
∑
j∈B

∑
k∈−j

∑
l∈−i a

k
l ξ
k
l,i (32)

Thus, we will have ai = γi if and only if:

0 =
∑
j∈B

∑
k∈−j

∑
l∈−i a

k
l ξ
k
l,i (33)

However, abs > γbs > 0 for some s ∈ S and b ∈ B since
in equilibrium we have asb = γbs +

∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s (see

(28)), and by assumption ξjl,i > 0 for some j ∈ B and some
i, l ∈ S with i 6= l. Thus, (33) cannot hold.

Theorem 3 confirms the typical result that Nash equilibria
are generally (ex-ante) inefficient. However, it further shows
that, in the particular case of this framework, GN equilibria are
efficient only when there is no coupling between the payments
the aggregators make to data sources. In this light, we find it
appealing to regard the data sources as public good which
the aggregators have incentive to exploit. As the following
result demonstrates, this problematic coupling will always
arise when the aggregators utilize linear regression.

Corollary 1. Suppose that each aggregator b ∈ B has
estimator f̂ b which is linear regression. Further suppose that
the conditions of Theorem 3 hold. Then there does not exist a
GNE solution to {P b(·)}b∈B wherein the price of anarchy is
equal to 1.

Proof. It can be shown (see [17, Footnote 6]) that

gb(x−s, δxs ,σ
2
−s(e−s)) = Ex̃∼δxs

[
[x̃T , 1] · (XTX)−1XT

· diag(σ2
−s(e−s)) ·X(XTX)−1 · [x̃T , 1]T

]
where X is the matrix whose rows are [xTi , 1] for i ∈ −s
and diag(σ2

−s(e−s)) is the diagonal matrix whose (i, i)–th
entry is σ2

i (ei). By inspection, gb(x−s, δxs , σ
2
−s(e−s)) is ill-

defined if [xTs , 1] is orthogonal to span{([xTi , 1])i∈−s}. This,
in turn, implies the payment contract pbs is ill-defined. Since
all the payments are assumed well-defined, [xTs , 1] cannot be
orthogonal to span{([xTi , 1])i∈−s}. Thus by inspection there
exists i, l ∈ S such that i 6= l and ξbi,l > 0. Thus, by
Theorem 3, there is no efficient equilibrium.

V. PARTIAL DATA SHARING

Thus far we have made the restrictive assumption that
each of the data sources accepts payment from and provides
query responses to each of the aggregators in the data market.
We have done this primarily to ease the introduction of the
notation needed to state and prove our main results. In this
section, we remove this assumption and analyze the case
where each of the data sources only accepts payment contracts
from and provides query responses to a subset of the data
aggregators. That is, we now assume that prior to the first stage
outlined at the beginning of Section III each data source s ∈ S
has agreed to accept the incentives issued by some subset of
the buyers Bs ⊂ B. As we shall see, these changes do not alter
our previous analysis significantly. When aggregator b ∈ B
only purchases data from a subset of the data sources, the
primary difference is that b now has fewer contract parameters
(cb, ab) and fewer IR and non-negativity constraints in his
optimization. The removal of these terms and constraints
reduces the dimensionality of the degeneracy observed in the
equilibria of the datamarket, but the overall structure of our
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analysis changes little. In order to demonstrate this point, in
this section we will focus on demonstrating in some detail
how a result analogous to Theorem 1 can be obtained in this
setting.

In practice, the mechanism by which data sources choose
which incentives to accept and which aggregators to work with
could be quite complicated. Although this is an important
and interesting point for future research, in this paper we
will assume that the sets Bs are exogenously given for all
s. Our purpose here is to show that for any exogenously
fixed assignments of data sources to data aggregators, the
degeneracies we highlighted earlier remain whenever at least
one data source receives payment from and provides data to
multiple aggregators, i.e. whenever the non-rivalrous nature of
data has an effect on the data market.9 Throughout the section
we will outline how the formulation we have considered must
be modified to fit this more general setting, and discuss how
the results we have presented thus-far carry through. As we
shall see, the generalization is rather straightforward, and thus
some details are omitted in the interest of brevity.

Once it has been decided which data sources will provide
data to which aggregators, the interactions of the data market
proceed as before. Each aggregator b ∈ B issues incentives
pb = (pbs)s∈Sb of the form (6) to the members of Sb, then
each data source s ∈ S evaluates the payments ps = (pjs)j∈Bs ,
decides what level of effort to exert when producing ys and
then shares this reading with the members of Bs. Each aggre-
gator then processes the data she has received to construct her
estimate for fb, issues payments pb, and incurs loss Lb.

Note that we have abused notation in redefining ps and pb

above to only reflect the subset of payments that are issued
in this section. Similar abuses will follow as we redefine
a number of objects from earlier in the document to be
appropriate for this new setting. Roughly speaking, each of
these items will be redefined by replacing B with Bs and S
with Sb where appropriate. For example, the buyers now need
only to select the parameters cb = (cbs)s∈Sb and ab = (abs)s∈Sb
when issuing incentives. We will omit the details of some of
these changes when context makes our meaning clear.

We may now model the utility for each data source s by:

us(es, ps) = E
( ∑
j∈Bs

pjs(y
j(e))

)
− es (34)

and the loss for each aggregator b by:

Lb(pb, e) = E
[(
f̂ bXb

(x∗)− f(x∗)
)2

−
∑
j∈−b ζ

b
j

(
f̂ jXj

(x∗)− f(x∗)
)2

+ ηb
∑
s∈Sb p

b
s(y

b(e))
]

where we now adopt the convention that X b = (xs, ys)s∈Sb
and yb(e) = (ys(es))s∈Sb .

9An interesting question for future work is the study of how these assign-
ments Bs would come to be in real-world settings, as well as the identification
of socially desirable assignments. Our results here provide evidence that it will
likely be difficult to find these desirable assignments.

Letting xb = (xi)i∈Sb , the expected value of the payment
pbs can now be calculated as

pbs((c
b
s, a

b
s), e) = E[pbs(y

b(e))]

= cbs − abs
(
σ2
s(es) + gb(x

b
Sb\{s}, δxs

, (σ2
i (ei))i∈Sb\{s}

)
and the expected total payment s receives will be
ps((cs, as), e) =

∑
b∈Bs

pbs((c
b
s, a

b
s), e). With these refactored

definitions, the individual rationality, non-negativity and in-
centive compatibility constraints on the buyers’ optimization
problems are still given by equations (8), (9) and (10), respec-
tively.

Now letting as =
∑
j∈Bs

ajs, it is straightforward to show
that the first-order optimality condition in (16) holds, and the
ensuing analysis in Section III-F pulls through. That is, one
can show that each selection of parameters a = (ab)b∈B still
induces a game between the data sources for which there is
a dominant strategy equilibrium. Moreover, for each s ∈ S,
there exists an implicitly defined map µs : R≥0 → R≥0 which
returns the equilibrium level of effort e∗s for each choice of
as. The constants as, as and the set As can also be redefined
for this setting in a natural way.

Following steps similar to those in Section III-G, the loss
for aggregator b can now be written as:

Lb((cb, ab), (c−b, a−b)) =
∑
i∈Sb γ

b
i σ

2
i (µi(ai))

+
∑

i∈S\Sb

γbi σ
2
i (µi(ai))

+ ηb
∑
i∈Sb

(
cbi − abi

[∑
l∈Sb ξ

b
i,lσ

2
l (µl(al))

])
(35)

where we define βbs = hb(xs, x
b, Fb) and then define

γbs = βbs −
∑
j∈Bs\{b} ζ

b
jβ

j
s for each b ∈ B and s ∈ Sb. Note

that if s 6∈ Sb, then we do not need to define the constant βbs ,
since the query response that s produces does not factor into
the estimator that aggregator b constructs for f . On the other
hand, we do need to define γbs for each s ∈ S and b ∈ B,
since we have assumed that s has agreed to provide at least
one aggregator with the reading ys. However, we note that the
second term on the right hand side of (35) does not depend
on any of aggregator b’s decision variables.

Similarly, we only need to define the parameter ξbi,l if both
i, l ∈ Sb. In the case that data sources i and l both accept
payment from aggregator b we then define:

ξbi,l =

{
hb(xl, x

b
−i, δxi) i 6= l

1 i = l
(36)

Applying the preceding analysis, aggregator b’s optimiza-
tion problem can now be re-written as:

min
(cb,ab)

Lb((cb, ab), (c−b, a−b))

s.t.
∑
j∈Bs

cjs − ajs
∑
i∈Sj

ξjs,iσ
2
i (µi(ai))

 ≥ µs(as),
∀s ∈ Sb

cbs − abs

(∑
i∈Sb

ξbs,iσ
2
i (µi(ai))

)
≥ 0, ∀s ∈ Sb (37)

as ∈ As, ∀s ∈ Sb abs ≥ 0, ∀s ∈ Sb
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where Lb is now defined by (35). Note that the optimization
facing aggregator b in (37) is quite similar to the optimization
in (20), save the modifications to some IR and non-negativity
constraints. As we shall see in the statement of Theorem 4 and
Corollary 2 below, when there are GN equilibria in the game
between the buyers, the removal of some of these constraints
will affect the degeneracy previously seen in the c parameters.

Before stating our generalization to Theorem 1 we rede-
fine some final notation. First, we define: γs =

∑
j∈Bs

γjs ,
where we emphasize that γs does not depend on γbs if
b /∈ Bs, since this term will fall out when characterizing
the optimality condition for aggregator b, and not affect
the existence of GN equilibria. We then define for each
s ∈ S and b ∈ B: qbs(a) = abs

(∑
i∈Sb ξ

j
s,iσ

2
i (µi(ai))

)
and

qs(a) =
∑
j∈Bs

qjs(a) + µs(as).

Theorem 4. Consider the game {Pb(·)}b∈B where each aggre-
gator’s objective is to solve the optimization in (37). Suppose
that for each s ∈ S, Es = R≥0, γs ≥ as. Further, suppose
that γbs > 0, for each s and b such that s ∈ Sb. If there exists
a GN equilibrium (c̄, ā) then the following conditions hold:

1) The set of GN equilibria in the game is given by{
(c, a) : a = ā, cs = qs(ā), cbs ≥ qbs(ā), ∀s,∀b ∈ Bs}

That is, the a parameters selected by the aggregators are
the same across each GN equilibrium, and for each s ∈ S
the equilibrium cs = (cbs)b∈Bs parameters lie in the |Bs|-
dimensional polytope defined above.

2) The effort exerted by each data source is the same in
each GN equilibrium and the efforts constitute a unique
induced dominated strategy equilibrium between the data
sources. More precisely, each data source exerts effort
µs(ās) in each GN equilibrium.

The proof is almost exactly the same as the proof of
Theorem 1 and is omitted here. In particular, note that the
only difference we need to consider is that the aggregators
now have fewer decision variables and fewer constraints on
these decision parameters. The removal of these components
manifests itself in the dimensionality of the polytope of
equilibrium parameters.

Corollary 2. Consider the game {Pb(·)}b∈B where each
aggregator’s objective is to solve the optimization in (37),
and suppose the assumptions of Theorem 4 hold. If there
exists a GN equilibrium solution (c̄, ā) then the following two
statements are true:

1) If |Bs| = 1 for all s ∈ S then (c̄, ā) is the only GN
equilibrium.

2) If there exists s ∈ S such that |Bs| ≥ 2 then there are an
infinite number of GN equilibria.

We state the previous result to emphasize that when even a
single data source accepts incentives from more than a single
aggregator an infinity of GN equilibria arise in the data market
(given that any GN equilibria exist). Returning to Theorem 4,
we see complete degeneracy in the equilibrium c parameters
offered to any data source who sells data to multiple buyers.

An analogous generalization to Theorem 2 is also straight-
forward to obtain for the more general case we consider in
this setting, though we omit it in the interest of brevity. The
analysis conducted in the proof of Theorem 3 also follows
through in a natural way. In particular, we still observe
that the first order optimality conditions for the aggregators
will coincide with the socially efficient choice of pricing
parameters if and only if each of the non-diagonal ξ parameters
is zero. In particular, this means that if |Bs| = 1 for each s ∈ S
the data market will achieve a socially efficient outcome, with
regards to the exogenous assignment of data sources we have
assumed has already occurred.

VI. CLOSING REMARKS

We analyzed the strategic interactions between multiple data
aggregators who share a pool of data sources. Previous work
showed that a single data aggregator can find unique solutions
that achieve socially efficient outcomes, but we demonstrate
that the same mechanisms will break down as soon as a second
data aggregator enters the market. In particular, we show that
there are either no GN equilibria or infinitely many, and these
solutions are frequently socially inefficient. This highlights the
need for further research into mechanisms for data markets
when there are multiple purchasers. In particular, there is a
need for mechanisms that can simultaneously handle moral
hazard and the non-rivalrous nature of data.

APPENDIX

A. GNE Existence Result
Theorem 5 (Existence of GN equilibria [26]). Consider
a GN equilibrium problem {P b(·)}b∈B. Suppose that for
each b ∈ B, the following hold: i) the correspondence
Mb :

∏
i∈−bZi → Zb is upper semi-continuous. ii) the

map Lb is continuous on the graph of Mb. iii) the map
z−b 7→ minzb∈Mb(z−b) L

b(zb, z−b) is continuous. iv) for all
z−b, the best response set, BRb(z−b) = arg min{Lb(zb, z−b) :
zb ∈Mb(z−b)} is contractable.

Then, there exists a GN equilibrium.

B. Price of Anarchy with Bounded Effort Spaces
Theorem 6. Suppose γji > 0, ∀i ∈ S, ∀j ∈ B. Further
suppose that Es = [0, emaxs ] and that γs ∈ [as,as) for each
s ∈ S. Then, there exists a GN equilibrium to the game
{P b(·)}b∈B between the aggregators for which the price of
anarchy is equal to one if and only if for each j ∈ B and
each i, l ∈ S such that i 6= l we have that ξji,l = 0.

Proof. In the case where As is bounded ∀s ∈ S , we make
an analogous argument as was made in Theorem 3. Suppose
that as = γs,∀s ∈ S as is needed for the socially optimal
solution. Then, by assumption, for each s ∈ S, we have as <
as < as, and thus, it must be true that in equilibrium the a–
parameters are given by an equation of the form a = Ξa+ γ,
since the best response for each aggregator is given by abs =
γbs+

∑
j∈−b

∑
l∈−s a

j
l ξ
j
l,s, which is the second option in (28).

However, again it cannot be the case that γs = as for each
s ∈ S if ξji,l 6= for some j ∈ B and i, l ∈ S such that i 6= l.
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