Numerical Analysis I Homework and Project Schedule

Homework Schedule

DATE	ASSIGNMENT (from Johnson Riess)
Oct. 1	§1.3: 1b(iii, iv), 4(replace hex with binary), 8, additional problems I
Oct. 8	additional problems II and III; §2.1: 4, 6, 10, 11; §2.2.4: 4, 5, 9, 10, 16, 19
Oct. 15	§2.3: 3, 7, 8, 9, 12a, 12b; §2.4: 5, 7, 8, 9, 13
Oct. 22	§2.5: 1, 3, 4, 5a, 6a, 7
Oct. 28	§4.3.1: 1, 4, 6, 9; §4.3.2: 5; §4.3.3: 2, 7, 9, 12
Oct. 29	MIDTERM
Nov. 5	§4.4.1: 2, 3, 4
Nov. 12	§5.1: 4; §5.2.1: 1a, 3a, 4a, 11
Nov. 19	§5.2.2: 1, 2, 5, 8, 10; §5.2.4: 3abd, 5, 6, 10, 13
Nov. 24	§5.2.6: 1, 3; §6.2.2: 2, 3, 4, 8, 9, 14
Dec. 3	§6.2.4: 7, 9, 10, 11
Dec. 14	8:30-10:20 a.m., FINAL EXAM

Project Schedule

DATE	TOPIC
Oct 22	Tridiagonal linear systems
Nov. 5	Gauss-Seidel method
Nov. 19	Newton's method, fixed point iteration and the secant method
Dec. 6	Polynomial interpolation

Additional Problems:
I. (Due Oct. 1)
i. Discover or deduce how the numbers $1 / 2,2 / 3$ and $3 / 5$ are represented internally on some computer or calculator you use. Use an appropriate notation, i.e. binary, decimal, hexadecimal, etc. You will have to give both an exponent and a mantissa.
ii. Consider the following "program" (it might be in fortran, matlab, S-Plus, C or other language, though the particular languages assignment operator might have to be substituted for "=", i.e. in S-Plus "<-" means assign)
$\mathrm{H}=1 . / 2$.
$\mathrm{X}=2 . / 3 .-\mathrm{H}$
$\mathrm{Y}=3 . / 5 .-\mathrm{H}$
$\mathrm{E}=(\mathrm{X}+\mathrm{X}+\mathrm{X})-\mathrm{H}$
$\mathrm{F}=(\mathrm{Y}+\mathrm{Y}+\mathrm{Y}+\mathrm{Y}+\mathrm{Y})-\mathrm{H}$
$\mathrm{Q}=\mathrm{F} / \mathrm{E}$
"OUTPUT" Q
The variable Q can take on several different values depending on the floating-point arithmetic hardware used by the computer or calculator. Try to figure out the value of Q for some computer you are familiar with, preferably the same one you used in the previous part. Run the "program" on that computer and explain your results. If you use a computer for this, your write up of your solution should specify what computer, what language, include a copy of the "program" as it was used on the computer and the results and your explanation. If you use a calculator, give as much of this information as makes sense in that setting.
II. (Due Oct. 8) Describe a method to compute $f(x)=(1-\cos x) / x$ when $|x|$ is small.
III. (Due Oct. 8) Desribe a method to compute $g(x)=(\log x-1)$, when x is close to e.

[^0]Click here to download a pdf version of this document.

Back to the Math 464 Home Page

[^0]: Last Modified: Wed. September 29, $19991: 55 \mathrm{pm}$

