(a) All of the review for Chapter 16, concept check, true-false and problems.
(b) Here's a "sample" exam. (Probably too long for the summer 1 hour period. But you must be able to work these types of problems).

1. This problem is based on problem 48 from section 16.7 of the text.

A torus is the (donut-shaped) surface obtained by rotating a circle about an axis that does not intersect the circle. Let S be the torus given by

$$
\mathbf{r}(\theta, \varphi)=\langle(2+\cos \varphi) \cos \theta,(2+\cos \varphi) \sin \theta, \sin \varphi\rangle .
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq \varphi \leq 2 \pi$. The surface area of S is given by

$$
\iint_{S} d S
$$

Compute the surface area of the torus.
2. Let S consist of those points (x, y, z) of the unit sphere such that $y \geq 0$ and $z \geq 0$.
(a) Draw a picture of S.
(b) Define and draw a unit normal field on S.
(c) Give parametric equations for ∂S. Be sure to use the Stokes's orientation. Also, draw arrows on your picture indicating the Stokes's orientation on the boundary.
3. Consider the vector field

$$
\mathbf{F}(x, y, z)=\left\langle y z e^{x y z}+1, x z e^{x y z}+2, x y e^{x y z}+3\right\rangle .
$$

(a) Is \mathbf{F} conservative? If so, find a potential function. If not, explain why not.
(b) Compute the integral

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}
$$

where C is the oriented curve parameterized by $\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle, 0 \leq t \leq 1$.
4. Let S denote the portion of $x=1-y^{2}-z^{2}$ such that $x \geq 0$. Let S be oriented by the unit normal field

$$
\mathbf{n}(x, y, z)=\frac{\langle-1,-2 y,-2 z\rangle}{\sqrt{1+4 y^{2}+4 z^{2}}}
$$

compute

$$
\iint_{S} \operatorname{curl}\langle x,-z, y\rangle \cdot d \mathbf{S}
$$

5. Let C be the square with vertices $(1,1),(-1,1),(-1,-1)$, and $(1,-1)$ oriented in that order. Compute

$$
\int_{C}\left\langle x \ln \left(x^{2}+y^{2}\right),-y \ln \left(x^{2}+y^{2}\right)\right\rangle \cdot d \mathbf{r}
$$

6. (Chap 16 review problem 36) Let $\mathbf{x}=\langle x, y, z\rangle$. Compute the outward flux of

$$
\mathbf{F}(\mathbf{x})=\mathbf{x} /|\mathbf{x}|^{3}
$$

through the ellipsoid $4 x^{2}+9 y^{2}+6 z^{2}=36$. (The answer is NOT 0 .)

