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1 Matrices and Systems of Linear Equations

1.1 Introduction to Matrices and Systems of Linear
Equations

Ragozin’s quick tricks for elimination. This approach has less arithmetic than
the approach in the printed text and allows decisions to be made sooner about
the existence of solutions. All the examples and solutions I will give follow
this slight variant of Johnson, Riess and Arnold.

Replace the material in JRA p.11, from “The variable x1 has now been
. . . ” through JRA p.12, “. . . Gauss-Jordan elimination” with the ma-
terial on the following two pages:
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The variable x1 has now been eliminated from the second and third equations.
Next, we focus on the last two equations. Our goal is to have x2 appear here
with coefficient 1 in the second equation and then to eliminate x2 from the
remaining equations. We continue the reduction process with the following
operations:

System: Augmented Matrix:
(-1)E 2: (-1)R1:

x1 + 2x2 − x3 = 1
x2 + 2x3 = 2

2x2 + x3 = −2

 1 2 −1 1
0 1 2 2
0 2 1 −2


E 3-2E 2: R3-2R2:
x1 + 2x2 − x3 = 1

x2 + 2x3 = 2
−3x3 = −6

 1 2 −1 1
0 1 2 2
0 0 −3 −6


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The variable x2 has now been eliminated from the third equation. Next we
make x3 have coefficient 1 in the third equation and back eliminate x3 from
the first and second equations:

System: Augmented Matrix:
(-1/3)E 3: (-1/3)R3:

x1 + 2x2 − x3 = 1
x2 + 2x3 = 2

x3 = 2

 1 2 −1 1
0 1 2 2
0 0 1 2


E 2-2E 3: R2-2R3:
x1 + 2x2 − x3 = 1

x2 = −2
x3 = 2

 1 2 −1 1
0 1 0 −2
0 0 1 2


E 1+E 3: R1+R3:

x1 + 2x2 = 3
x2 = −2

x3 = 2

 1 2 0 3
0 1 0 −2
0 0 1 2


Now all that remains is to back eliminate x2 from the first equation:

System: Augmented Matrix:
E 1-2E 2: R1-2R2:
x1 = 7

x2 = −2
x3 = 2

 1 0 0 7
0 1 0 −2
0 0 1 2


The last sytem above clearly has a unique solution given by x1 = 7,x2 = −2,
and x3 = 2. Because the final system is equivalent to the original given
system, both systems have the same solution.

The reduction process used in the preceding example is known as Gauss
elimination and back substitution ... I.e., continue with “and will be
explained in Section 1.2.”

1.2 Echelon Form and Gauss-Jordan Elimination

The box on page 20 gives steps for forming a reduced echelon form matrix
which is row equivalent to a given matrix. When the matrices involved
are considered as augmented matrices corresponding to systems of linear
equations, the corresponding elementary operations on equations comprise
what is often called Gauss elimination with backsolving . The first 5
steps, which produce a matrix in echelon form row equivalent to the original
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matrix, are the Gauss elimination steps. Step 6, which produces a reduced
echelon form matrix row equivalent to the original matrix, corresponds to
backsolving.

The paragraph on page 20 just before Example 3, starts by saying Ex-
ample 3 illustrates the six-step process, but immediately goes on to say it
doesn’t actually illustrate it. Rather it illustrates a “single-pass variation”.
What is written certainly does “Use elemntary row operations to transform
the following matrix to reduced echelon form

0 0 0 0 2 8 4
0 0 0 1 3 11 9
0 3 −12 −3 −9 −24 −33
0 −2 8 1 6 17 21


′′

Here are replacements for the steps in Example 3, pages 20-21 which
first use steps 1-5 on the matrix above to obtain a row equivalent echelon
form matrix and then carry out step 6 to get a row equivalent reduced echelon
form matrix:
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R1 ↔ R3, (1/3)R1 : Introduce a leading 1 into the first row of the first
nonzero column

0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 2 8 4
0 −2 8 1 6 17 21


R4 + 2R1 : Introduce 0’s below the leading 1 in row 1

0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 2 8 4
0 0 0 −1 0 1 −1


R4 + R2 : Introduce 0’s below the leading 1 in row 2

0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 2 8 4
0 0 0 0 3 12 8


(1/2)R3 : Introduce a leading 1 into row 3

0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 1 4 2
0 0 0 0 3 12 8


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R4 − 3R3 : Introduce a 0’s below the leading 1 in row 3
0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 1 4 2
0 0 0 0 0 0 2


(1/2)R4 : Introduce a leading 1 into row 4

0 1 −4 −1 −3 −8 −11
0 0 0 1 3 11 9
0 0 0 0 1 4 2
0 0 0 0 0 0 1


R1 + 11R4,R2 − 9R4,
R3 − 2R4 :

Introduce 0’s above the leading 1 into row 4
0 1 −4 −1 −3 −8 0
0 0 0 1 3 11 0
0 0 0 0 1 4 0
0 0 0 0 0 0 1



R1 + 3R3,R2 − 3R3 : Introduce 0’s above the leading 1 into row 3
0 1 −4 −1 0 4 0
0 0 0 1 0 −1 0
0 0 0 0 1 4 0
0 0 0 0 0 0 1


R1 + R2 : Introduce 0’s above the leading 1 into row 2

0 1 −4 0 0 3 0
0 0 0 1 0 −1 0
0 0 0 0 1 4 0
0 0 0 0 0 0 1


Notice this example is entirely about reduced echelon form for matrices.

Nothing has been said about any equations. (If the given matrix was the
augmented matrix of a system, then we could have concluded that the system
was inconsistent just after the R4 − 3R3 step above. Do you see why?)

To further understand the (slight) difference between Gauss elimination
and Gauss-Jordan elimination, I offer replacements for the last two reduc-
tion steps in Example 4 on page 23; these are part of finding the solutions
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to a linear system whose augmented matrix is
2 −4 3 −4 −11 28
−1 2 −1 2 5 −13

0 0 −3 1 6 −10
3 −6 10 −8 −28 61

 .
Notice that the first row equivalence in JRA is not what step 1 and 2

would suggest you should do. Rather it is a “simple” way to produce a
leading 1 in column 1 to use for further elimination. Also note that the
notation R1 + R2 has R1 occuring first, so that tells us that row 1 has been
changed.

R3 + 3R2,R4 − 4R2 : Introduce 0’s below the leading 1 in row 2
1 −2 2 −2 −6 15
0 0 1 0 −1 2
0 0 0 1 3 −4
0 0 0 −2 −6 8


R4 + 2R3 : Introduce 0’s below the leading 1 in row 3

1 −2 2 −2 −6 15
0 0 1 0 −1 2
0 0 0 1 3 −4
0 0 0 0 0 0


R1 + 2R3 : Introduce 0’s above the leading 1 in row 3

1 −2 2 0 0 7
0 0 1 0 −1 2
0 0 0 1 3 −4
0 0 0 0 0 0


R1 − 2R2 : Introduce 0’s above the leading 1 in row 2

1 −2 0 0 2 3
0 0 1 0 −1 2
0 0 0 1 3 −4
0 0 0 0 0 0


The matrix above is the augmented matrix for the system of equations: ...
.
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1.3 Consistent Systems of Linear Equations

On page 32 and 33 of this section there are solutions to two problems which
use variants of the basic 6 step method for finding a matrix in reduced echelon
form which is row equivalent to a given matrix. Here are the reductions which
strictly apply the 6 step method. We have used a slighly modified format to
indicate steps, and in particular have used R′3 (in rows 2 and 3) to indicate
that the new row 3 (after the multiplication by 1/8) has been used to carry
out these steps. 1 2 1 3 0

2 4 3 1 0
3 6 6 2 0

 =⇒
R2 − 2R1

R3 − 3R1

 1 2 1 3 0
0 0 1 −5 0
0 0 3 −7 0

 =⇒
R3 − 3R2 1 2 1 3 0

0 0 1 −5 0
0 0 0 8 0

 (1/8)R3

R2 + 5R′3
R1 − 3R′3

 1 2 1 0 0
0 0 1 0 0
0 0 0 1 0

 R1 −R2

=⇒

 1 2 0 0 0
0 0 1 0 0
0 0 0 1 0


As a check on your understanding of the elimination process, verify that the
middle step R2 + 5R′3 is the same as the step R2 + (5/8)R3, where now R3

denotes row 3 of the matrix to the left of the equivalence step. Also find a
so R1−aR3 achieves the same equivalence as the bottom step R1 − 3R′3.


