MATH 308
David L. Ragozin

SAMPLE FIRST EXAM
IN CLASS PART

April 13, 1990

Closed book exam, except one 8×11 sheet of notes may be consulted. There are 8 questions, with a total of 100 points. To receive full credit you must show all your work and give reasons. You may point to and use the results (work) for any problem in solving (explaining) any later problem.
Let $A=\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ 3 & 6 & 4 & 2 \\ 0 & 0 & 4 & -3\end{array}\right]$ and let \mathbf{a}_{i} denote the i 'th column of A. Each of problems 1-3 concern these objects.
1.(10 pts.) If A is the coefficient matrix of a linear system, how many unknowns does that system have? (Explain.)

Sol. A system with A as coefficient matrix has 4 variables(or unknowns), one for each column of A.
2.(15 pts.) Find a reduced echelon matrix which is row equivalent to A.

Sol.
Perform the following elementary row ops: $\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ 3 & 6 & 4 & 2 \\ 0 & 0 & 4 & -3\end{array}\right] \begin{gathered} \\ R_{2}-3 R_{1}\end{gathered}$
$\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 4 & -3\end{array}\right] \underset{R_{3}-4 R_{2}}{ }\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1\end{array}\right] \begin{aligned} & R_{1}-R_{3} \\ & R_{2}+R_{3} \\ & ===>\end{aligned}\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \xlongequal[R_{1}-R_{2}]{===>}\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$.
This last is reduced echelon as its echelon (1'st non-zero in each row to right of first nonzero in preceeding row) and each column with a leading non-zero has all other entries 0 .
3. (10 pts.) If $B=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right]$, how many solutions does the homogeneous matrix equation $B \mathbf{x}=\theta$ have? (Why?) (You may, of course, refer to your solution to \#2 if that can help explain.)

Sol. The work in \#2, applied to just the first 3 columns (B) plus a column of zero's (for the RHS of $B \mathbf{x}=\theta$) shows: $\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 3 & 6 & 4 & 0 \\ 0 & 0 & 4 & 0\end{array}\right] \underset{===>}{\text { various }}$ rops $\left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$. Thus $B \mathbf{x}=\theta$ has infinitely many solutions, as there are 2 non-zero rows in a row equivalent echelon matrix, and thus $3-2=1$ unconstrained variables in any solution. (Alternately, from the work above we read off the solutions: $\mathbf{x}=\left[\begin{array}{r}-2 x_{2} \\ x_{2} \\ 0\end{array}\right]$ with the infinitely many (arbitray) values for x_{2} leading to infinitely many solutions.)
4. (15 pts.) Suppose a square matrix J satisfies $J^{2}=4 J$, but $J \neq 4 I$. Explain why J must be singular.

Sol. If J is non-singular, then J^{-1} exists. Multiply through by J^{-1} (on the right) to get: $J^{2} J^{-1}=4 J J^{-1}$. Or $J=J I=J J J^{-1}=4 J J^{-1}=4 I$. This contradicts $J \neq 4 I$. Hence J^{-1} does not exist and J must be singular.
5. $(10$ pts. $) \quad$ Suppose the (100×2) matrix $V=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$ satisfies $V\left[\begin{array}{r}2 \\ -1\end{array}\right]=\theta$.

Explain why $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is dependent, when $\mathbf{u}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{u}_{2}=-\mathbf{v}_{1}+\mathbf{v}_{2}$.

Sol.
Since $V\left[\begin{array}{r}2 \\ -1\end{array}\right]$ says $2 \mathbf{v}_{1}-\mathbf{v}_{2}=\theta$, we have $\mathbf{v}_{2}=2 \mathbf{v}_{1}$. Plug into the definitions of \mathbf{u}_{i} to get: $\mathbf{u}_{1}=\mathbf{v}^{1}+2 \mathbf{v}_{1}=3 \mathbf{v}_{1}$ and $\mathbf{u}_{2}=-\mathbf{v}_{1}+2 \mathbf{v}_{1}=\mathbf{v}_{1}$. This says $\mathbf{u}_{1}=3 \mathbf{u}_{2}$. Thus the \mathbf{u}_{i} 's form a linearly dependent set since one is a multiple of the other. (Or note: $\mathbf{u}_{1}-3 \mathbf{u}_{2}=\theta$. Thus $x_{1}=1$, $x_{2}=-3$ give a non-zero solution to $x_{1} \mathbf{u}_{1}+x_{2} \mathbf{u}_{2}=\theta$. And so $\left\{\mathbf{u s}_{1}, \mathbf{u}_{2}\right\}$ is a linearly dependent set.) (Or you could attempt to find non-zero $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, with $\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right] \mathbf{x}=\theta$. Plugging in the given information leads to the equations $\left(x_{1}-x_{2}\right) \mathbf{v}_{1}+\left(x_{1}+x_{2}\right) \mathbf{v}_{2}=\theta$. But this will be satisfied provided $x_{1}-x_{2}=2$ and $x_{1}+x_{2}=-1$, from the equation for V. These two can be solved to get the non-zero solution $x_{1}=1 / 2, x_{2}=-3 / 2$).
6.(15 pts.) Let $F=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 6 \\ 0 & 0 & 2\end{array}\right]$. Find F^{-1}, the inverse of F.

Sol. Apply row operations to [$\left.\begin{array}{ll}F & I\end{array}\right]$ to get to $\left[\begin{array}{ll}I & B\end{array}\right]$, since then the columns of B solve $F \mathbf{b}_{j}=\mathbf{e}_{j}$. Hence you can read off $B=F^{-1}=\left[\begin{array}{rrr}-1 & 2 & -4 \\ 1 & -1 & 1 \\ 0 & 0 & 1 / 2\end{array}\right]$. (One sequence of row ops which does the job is $R_{2}===>R_{2}-R_{1}$ to get an echelon matrix. Then $R_{2}===>R_{2}-R_{3}$, $R_{1}===>R_{1}-2 R_{3}, R_{1}===>R_{1}+2 R_{2}$, to get a reduced echelon matrix ("back elimination"). And then $R_{2}===>-R_{2}, R_{3}===>(1 / 2) R_{3}$ to get ones on the diagonal.
7.(10 pts.) Let $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$, and $N=\left[\begin{array}{cc}7 & 8 \\ 9 & 10\end{array}\right]$.
a) Which product $M N$ or $N M$ is defined? (Explain.)

Sol. $\quad N M$ is defined since $2=$ number of columns of the left factor $(N)=$ number of rows of the right factor $(M)=2$.
b) Calculate the entry in the $2^{\text {nd }}$ row and $1^{\text {st }}$ column of the product defined in a).

Sol. $\quad(2,1)$ entry in $N M$ is just the product of row 2 of N with column 1 of M : [9 10] $\left[\begin{array}{l}1 \\ 4\end{array}\right]=9 \cdot 1+10 \cdot 4=49$
8.(15 pts .) Suppose a matrix C is changed by the following elementary row operations, $R_{2}-2 R_{1}$, $R_{3}+R_{1}, R_{3}+3 R_{2}$ into the matrix F as represented in the following diagram:

$$
C \stackrel{R_{2}-2 R_{1}}{=} D \stackrel{R_{3}+R_{1}}{=} D \stackrel{R_{3}+3 R_{2}}{=} F=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find C and find all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ with $C \mathbf{x}=\theta$.
Sol. Get back to C by undoing the row operations starting from the right (F) and working backwards ($R_{i}-a R_{j}$ undoes $R_{i}+a R_{j}$ as operations on R_{i} :
$F=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \underset{R_{3}-3 R_{2}}{ }==\Rightarrow E=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & -3 & 1\end{array}\right] \underset{R_{3}-R_{1}}{ } \Rightarrow=\left[\begin{array}{rrr}1 & 2 & 3 \\ 0 & 1 & 0 \\ -1 & -5 & -2\end{array}\right] \underset{R_{2}+2 R_{1}}{ } C=\left[\begin{array}{rrr}1 & 2 & 3 \\ 2 & 5 & 6 \\ -1 & -5 & -2\end{array}\right]$.

Solve for x

Since row operations will take $\left[\begin{array}{ll}C & \theta\end{array}\right]$ to $\left[\begin{array}{ll}F & \theta\end{array}\right]$, we can read off the fact that there will be no unconstrained (free) variables in the solution \mathbf{x}, as there is no column in the coefficient part of [$F \theta$] without a leading non-zero entry. Hence there are only the trivial solution to $F \mathbf{x}=\theta$ and thus only trivial solution to $C \mathbf{x}=\theta$.

Alternate

Or from the system determined by $\left[\begin{array}{ll}F & \theta\end{array}\right]$, backsolving from the bottom up, we read off the solution: $x_{3}=0, x_{2}=0$, and $x_{1}=-2 x_{2}-3 x_{3}=-2 \cdot 0-3 \cdot 0=0$. Thus $\mathbf{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ is the only solution.

