NAME SAMPLE

MATH 308	SAMPLE FIRST EXAM April 13, 1990												
David L. Ragoz	tin IN CLASS PART												
Closed bo total of 100 poi to and use the	ok exam, except one 8×11 sheet of notes may be consulted. There are 8 questions, with a nts. To receive full credit you must show all your work and give reasons. You may point results (work) for any problem in solving (explaining) any later problem.												
Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \\ 0 & 0 \end{bmatrix}$ objects.	$\begin{bmatrix} 1 & 1 \\ 4 & 2 \\ 4 & -3 \end{bmatrix}$ and let \mathbf{a}_i denote the <i>i</i> 'th column of A. Each of problems 1-3 concern these												
1.(10 pts.)	If A is the coefficient matrix of a linear system, how many <i>unknowns</i> does that system have? (Explain.)												
Sol.	A system with A as coefficient matrix has 4 variables(or unknowns), one for each column of A .												
2.(15 pts.)	Find a reduced echelon matrix which is row equivalent to A.												
Sol.	Perform the following elementary row ops: $\begin{bmatrix} 1 & 2 & 1 & 1 \\ 3 & 6 & 4 & 2 \\ 0 & 0 & 4 & -3 \end{bmatrix}_{R_2 - 3R_1}^{===>}$												
	$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 4 & -3 \end{bmatrix}_{R_3 - 4R_2} = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_3} \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{R_1 - R_2} \begin{bmatrix} 1 $												
	This last is reduced echelon as its echelon (1'st non-zero in each row to right of first non-zero in preceeding row) and each column with a leading non-zero has all other entries 0.												
3.(10 pts.)	If $B = [\mathbf{a}_1 \ \mathbf{a}_2 \ \mathbf{a}_3]$, how many solutions does the homogeneous matrix equation $B\mathbf{x} = \theta$ have? (Why?) (You may, of course, refer to your solution to #2 if that can help explain.)												
Sol.	The work in #2, applied to just the first 3 columns (<i>B</i>) plus a column of zero's (for the RHS $\begin{bmatrix} 1 & 2 & 1 & 0 \end{bmatrix}_{various} \begin{bmatrix} 1 & 2 & 0 & 0 \end{bmatrix}$												
	of $B\mathbf{x} = \theta$) shows: $\begin{vmatrix} 3 & 6 & 4 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix} \begin{vmatrix} row ops \\ e==> \end{vmatrix} \begin{vmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix}$. Thus $B\mathbf{x} = \theta$ has infinitely many												
	solutions, as there are 2 non-zero rows in a row equivalent echelon matrix, and thus $3-2=1$ unconstrained variables in any solution. (Alternately, from the work above we $\begin{bmatrix} -2x_2 \end{bmatrix}$												
	read off the solutions: $\mathbf{x} = \begin{bmatrix} x_2 \\ 0 \end{bmatrix}$ with the infinitely many (arbitray) values for x_2 leading to												
	infinitely many solutions.)												

- 4.(15 pts.) Suppose a square matrix J satisfies $J^2 = 4J$, but $J \neq 4I$. Explain why J must be singular.
- Sol. If J is non-singular, then J^{-1} exists. Multiply through by J^{-1} (on the right) to get: $J^2 J^{-1} = 4JJ^{-1}$. Or $J = JI = JJJ^{-1} = 4JJ^{-1} = 4I$. This contradicts $J \neq 4I$. Hence J^{-1} does not exist and J must be singular.

5.(10 pts.) Suppose the (100 × 2) matrix
$$V = \begin{bmatrix} \mathbf{v}_1 \ \mathbf{v}_2 \end{bmatrix}$$
 satisfies $V \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \theta$.

Explain why { \mathbf{u}_1 , \mathbf{u}_2 } is **dependent**, when $\mathbf{u}_1 = \mathbf{v}_1 + \mathbf{v}_2$, $\mathbf{u}_2 = -\mathbf{v}_1 + \mathbf{v}_2$.

Sol.

Since $V\begin{bmatrix} 2\\ -1 \end{bmatrix}$ says $2\mathbf{v}_1 - \mathbf{v}_2 = \theta$, we have $\mathbf{v}_2 = 2\mathbf{v}_1$. Plug into the definitions of \mathbf{u}_i to get: $\mathbf{u}_1 = \mathbf{v}^1 + 2\mathbf{v}_1 = 3\mathbf{v}_1$ and $\mathbf{u}_2 = -\mathbf{v}_1 + 2\mathbf{v}_1 = \mathbf{v}_1$. This says $\mathbf{u}_1 = 3\mathbf{u}_2$. Thus the \mathbf{u}_i 's form a linearly dependent set since one is a multiple of the other. (Or note: $\mathbf{u}_1 - 3\mathbf{u}_2 = \theta$. Thus $x_1 = 1$, $x_2 = -3$ give a non-zero solution to $x_1\mathbf{u}_1 + x_2\mathbf{u}_2 = \theta$. And so $\{\mathbf{us}_1, \mathbf{u}_2\}$ is a linearly dependent set.) (Or you could attempt to find non-zero $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, with $[\mathbf{u}_1 \ \mathbf{u}_2]\mathbf{x} = \theta$. Plugging in the given information leads to the equations $(x_1 - x_2)\mathbf{v}_1 + (x_1 + x_2)\mathbf{v}_2 = \theta$. But this will be satisfied provided $x_1 - x_2 = 2$ and $x_1 + x_2 = -1$, from the equation for *V*. These two can be solved to get the non-zero solution $x_1 = 1/2$, $x_2 = -3/2$).

6.(15 pts.) Let
$$F = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}$$
. Find F^{-1} , the inverse of F .

Sol. Apply row operations to $[F \ I]$ to get to $[I \ B]$, since then the columns of B solve $F\mathbf{b}_j = \mathbf{e}_j$. Hence you can read off $B = F^{-1} = \begin{bmatrix} -1 & 2 & -4 \\ 1 & -1 & 1 \\ 0 & 0 & 1/2 \end{bmatrix}$. (One sequence of row ops which does the job is $R_2 = =>R_2 - R_1$ to get an echelon matrix. Then $R_2 = =>R_2 - R_3$, $R_1 = =>R_1 - 2R_3$, $R_1 = =>R_1 + 2R_2$, to get a reduced echelon matrix ("back elimination"). And then $R_2 = => -R_2$, $R_3 = =>(1/2)R_3$ to get ones on the diagonal.

7.(10 pts.) Let
$$M = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, and $N = \begin{bmatrix} 7 & 8 \\ 9 & 10 \end{bmatrix}$.

a) Which product *MN* or *NM* is defined? (Explain.)

Sol. NM is defined since 2 = number of columns of the left factor (N) = number of rows of the right factor (M) = 2.

> Calculate the entry in the 2^{nd} row and 1^{st} column of the product defined in a). b)

Sol. (2,1) entry in NM is just the product of row 2 of N with column 1 of M: [9 $10\left| \begin{array}{c} 1\\ 4 \end{array} \right| = 9 \cdot 1 + 10 \cdot 4 = 49$

8.(15 pts.)

Suppose a matrix C is changed by the following elementary row operations, $R_2 - 2R_1$, $R_3 + R_1$, $R_3 + 3R_2$ into the matrix F as represented in the following diagram:

$$C \xrightarrow{R_2 - 2R_1} D \xrightarrow{R_3 + R_1} E \xrightarrow{R_3 + 3R_2} F = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Find *C* and find all
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
 with $C\mathbf{x} = \theta$.

Sol.

Get back to C by undoing the row operations starting from the right (F) and working backwards $(R_i - aR_j \text{ undoes } R_i + aR_j \text{ as operations on } R_i$:

	1	2	3			1	2	3		1	2	3	===>	1	2	3	
F =	0	1	0	===>	<i>E</i> =	0	1	0	===> <i>D</i> =	0	1	0	$R_2 + 2R_1 C =$	2	5	6	•
	0	0	1	$R_3 - 3R_2$		0	-3	1	$R_3 - R_1$	1	-5	-2		1	-5	-2	
	-																

Solve for x

Since row operations will take [C θ] to [F θ], we can read off the fact that there will be no unconstrained (free) variables in the solution x, as there is no column in the coefficient part of [F θ] without a leading non-zero entry. Hence there are only the trivial solution to $F\mathbf{x} = \theta$ and thus only trivial solution to $C\mathbf{x} = \theta$.

Alternate

Or from the system determined by [F θ], backsolving from the bottom up, we read off the solution: [0]

$$x_3 = 0, x_2 = 0$$
, and $x_1 = -2x_2 - 3x_3 = -2 \cdot 0 - 3 \cdot 0 = 0$. Thus $\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ is the **only** solution.