MATH 308
David L. Ragozin

SAMPLE FIRST EXAM
IN CLASS PART

Closed book exam, except one 8×11 sheet of notes may be consulted. There are 8 questions, with a total of 100 points. To receive full credit you must show all your work and give reasons. You may point to and use the results (work) for any problem in solving (explaining) any later problem.
Let $A=\left[\begin{array}{rrrr}1 & 2 & 1 & 1 \\ 3 & 6 & 4 & 2 \\ 0 & 0 & 4 & -3\end{array}\right]$ and let \mathbf{a}_{i} denote the i 'th column of A. Each of problems 1-3 concern these objects.
1.(10 pts.) If A is the coefficient matrix of a linear system, how many unknowns does that system have? (Explain.)
If A is the coefficient matrix of a linear system,
2.(15 pts.) Find a reduced echelon matrix which is row equivalent to A.
3. (10 pts.) If $B=\left[\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}\right]$, how many solutions does the homogeneous matrix equation $B \mathbf{x}=\theta$ have? (Why?) (You may, of course, refer to your solution to \#2 if that can help explain.)
4. (15 pts.) Suppose a square matrix J satisfies $J^{2}=4 J$, but $J \neq 4 I$. Explain why J must be singular.
5. $(10$ pts. $) \quad$ Suppose the (100×2) matrix $V=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$ satisfies $V\left[\begin{array}{r}2 \\ -1\end{array}\right]=\theta$.

Explain why $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is dependent, when $\mathbf{u}_{1}=\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{u}_{2}=-\mathbf{v}_{1}+\mathbf{v}_{2}$.
6.(15 pts.) Let $F=\left[\begin{array}{lll}1 & 2 & 4 \\ 1 & 1 & 6 \\ 0 & 0 & 2\end{array}\right]$. Find F^{-1}, the inverse of F.
7. $(10$ pts. $) \quad$ Let $M=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$, and $N=\left[\begin{array}{cc}7 & 8 \\ 9 & 10\end{array}\right]$.
a) Which product $M N$ or $N M$ is defined? (Explain.)
b) Calculate the entry in the $2^{\text {nd }}$ row and $1^{\text {st }}$ column of the product defined in a).
8. (15 pts.) Suppose a matrix C is changed by the following elementary row operations, $R_{2}-2 R_{1}$, $R_{3}+R_{1}, R_{3}+3 R_{2}$ into the matrix F as represented in the following diagram:

$$
C \stackrel{R_{2}-2 R_{1}}{=} D \stackrel{R_{3}+R_{1}}{=} E \stackrel{R_{3}+3 R_{2}}{=} F=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find C and find all $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ with $C \mathbf{x}=\theta$.

Note for Spring 1995: Our exam may also cover some of the application areas covered in Johnson/Reiss/Arnold (1.5 and 1.9).

