	Total		

NAME ____

MATH 308 David L. Ragozin

SAMPLE Second Exam

February 26, 1992

Closed book exam, except one 8×11 sheet of notes may be consulted. There are 7 questions, each worth 15 points. To *receive full credit* you must show all your work and give reasons. You may use your answer to any question to help answer any later question, if it is relevant.

Here is a sequence of row operations which change a matrix A into a reduced row echelon form.

	[1	2	4	3	7]	====> [1	2	4	3	7]	[1	2	4	3	7 = = > 1	2	4	3	$7 R_1 - 4R_2$	[1	2	0	3	-1]
A =	2	4	5	6	8	$R_2 - 2R_1$	0	0	-3	0	-6 ====>	0	0	-3	0	$-6 \left \frac{-1}{2} R_2 \right 0$	0	1	0	2 ====>	0	0	1	0	2
	3	6	6	9	9	$R_3 - 3R_1$	0	0	-6	0	$-12]R_3 - 2R_2$	0	0	0	0	$0 \int 0 \int 0$	0	0	0	0	0	0	0	0	0

Use A and the information above to help answer questions 1-4.

1. Compute **nullity**(*A*). (As always your written work must "justify" your answer.)

2. Is $\bar{\mathbf{v}} = [3 \ 6 \ 2 \ 9 \ -1]$ in the row space of *A*? Why?

MATH 308

--

SAMPLE Second Exam

Here's the information on A repeated from page 1.

	1	2	4	3	7	====>	1	2	4	3	7]	[1	2	4	3	7 = = > 1	2	4	3	$7 R_1 - 4R_2$	1	2	0	3	-1
A =	2	4	5	6	8	$R_2 - 2R_1$	0	0	-3	0	-6 ====>	0	0	-3	0	$-6 \left \frac{-1}{3} R_2 \right 0$	0	1	0	2 ===>	0	0	1	0	2
	3	6	6	9	9_	$R_3 - 3R_1$	0	0	-6	0	$-12 \int R_3 - 2R_2$	0	0	0	0	$0 \int \int [0]$	0	0	0	0	0	0	0	0	0

3. Either write $A_5 = \begin{bmatrix} 7\\ 8\\ 9 \end{bmatrix}$ as a linear combination of the other columns of *A* or explain why that is impossible.

4. Find an **orthogonal basis** for R(A), the *range* of *A*.

--

--

- 5. In both parts of this question, $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with $T\begin{pmatrix} 1\\1 \end{pmatrix} = \begin{bmatrix} 2\\3 \end{bmatrix}, T\begin{pmatrix} 1\\-1 \end{bmatrix} = \begin{bmatrix} -2\\3 \end{bmatrix}$.
- a) Find $T(\bar{e}_1)$.

b) Find the matrix for T, i.e. find a matrix *B* with $T(\bar{\mathbf{x}}) = B\bar{\mathbf{x}}$ for all $\bar{\mathbf{x}}$ in \mathbf{R}^2 .

6. Suppose *C* is a (10×6) matrix with nullity(*C*) = 6. Can $C\bar{\mathbf{x}} = \bar{\mathbf{b}}$ be solved for *all* $\bar{\mathbf{b}}$. (As always - explain your answer.)

- 7. Let $R: \mathbf{R}^2 \to \mathbf{R}^2$ be symmetric or perpendicular **reflection** in the line *l* through θ and $\bar{\mathbf{u}} = \begin{bmatrix} 4 \\ 3 \end{bmatrix}$. (For any $\bar{\mathbf{v}}$, its' image, $R(\bar{\mathbf{v}})$ is such that $P(\bar{\mathbf{v}})$ is the mid-point of the line segment from $\bar{\mathbf{v}}$ to $R(\bar{\mathbf{v}})$, where P is the perpendicular *projection* onto *l*.)
- a) Use the mid-point property to find *a*,*b* with $R(\bar{v}) = aP(\bar{v}) + b\bar{v}$.

b) Compute $R\begin{pmatrix} 3\\ 0 \end{pmatrix}$. (You should use the formula for $P(\bar{v})$ involving dot-products and part 7a.)