Scores by question							
							Total

NAME

MATH 308
SAMPLE Second Exam
February 26, 1992
David L. Ragozin

Closed book exam, except one 8×11 sheet of notes may be consulted. There are 7 questions, each worth 15 points. To receive full credit you must show all your work and give reasons. You may use your answer to any question to help answer any later question, if it is relevant.
Here is a sequence of row operations which change a matrix A into a reduced row echelon form.

Use A and the information above to help answer questions 1-4.

1. Compute nullity (A). (As always your written work must "justify" your answer.)
2. Is $\overline{\mathbf{v}}=\left[\begin{array}{llll}3 & 6 & 2 & 9\end{array}-1\right]$ in the row space of A ? Why?

Here's the information on A repeated from page 1.

3. Either write $A_{5}=\left[\begin{array}{l}7 \\ 8 \\ 9\end{array}\right]$ as a linear combination of the other columns of A or explain why that is impossible.
4. Find an orthogonal basis for $R(A)$, the range of A.
5. In both parts of this question, $\mathrm{T}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a linear map with $\left.\left.\mathrm{T}\left(\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right], \mathrm{T}\left(\begin{array}{r}1 \\ -1\end{array}\right]\right)=\left[\begin{array}{r}-2 \\ 3\end{array}\right]$.
a) Find $T\left(\overline{\mathbf{e}}_{1}\right)$.
b) Find the matrix for T, i.e. find a matrix B with $\mathrm{T}(\overline{\mathbf{x}})=B \overline{\mathbf{x}}$ for all $\overline{\mathbf{x}}$ in \mathbf{R}^{2}.
6. Suppose C is a (10×6) matrix with nullity $(C)=6$. Can $C \overline{\mathbf{x}}=\overline{\mathbf{b}}$ be solved for all $\overline{\mathbf{b}}$. (As always - explain your answer.)
7. Let $\mathrm{R}: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be symmetric or perpendicular reflection in the line l through θ and $\overline{\mathbf{u}}=\left[\begin{array}{l}4 \\ 3\end{array}\right]$. (For any $\overline{\mathbf{v}}$, its' image, $\mathrm{R}(\overline{\mathbf{v}})$ is such that $\mathrm{P}(\overline{\mathbf{v}})$ is the mid-point of the line segment from $\overline{\mathbf{v}}$ to $\mathrm{R}(\overline{\mathbf{v}})$, where P is the perpendicular projection onto l.)
a) Use the mid-point property to find a, b with $\mathrm{R}(\overline{\mathbf{v}})=a \mathrm{P}(\overline{\mathbf{v}})+b \overline{\mathbf{v}}$.

b) Compute $\mathrm{R}\left(\left[\begin{array}{l}3 \\ 0\end{array}\right]\right.$. (You should use the formula for $\mathrm{P}(\overline{\mathbf{v}})$ involving dot-products and part 7a.)

