NAME _____ MATH 308 Winter 1992 FINAL EXAM Instructor David L. Ragozin Closed book exam, except one 8×11 sheet of notes. There are 10 questions, each worth 20 points. To receive *full credit* you must **show all your work and give reasons.** For problems 1 and 2 let $$A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 1 \\ 0 & 1 & 3 \end{bmatrix}$$. 1. Find the **characteristic polynomial** of A. 2. Find a basis for \mathbb{R}^3 consisting of eigenvectors for A. For questions 3-4 let *B* be the coefficient matrix for the system of equations: $$x_1 + 2x_2 + x_3 - 3x_4 = 0$$ $$3x_1 + 6x_2 + x_3 - 9x_4 = 0$$ $$-2x_1 - 4x_2 + 2x_3 + 6x_4 = 0$$ 3.i. Find **reduced echelon** matrix which is row equivalent to *B*. 3.ii. Find all \mathbf{x} in \mathbf{R}^4 which solve $B\mathbf{x} = \mathbf{\theta} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. 4.i. Let B^T be the **transpose** of the matrix defined at the top of the previous page. Compute $rank(B^T)$. 4.ii. Is the *nullspace* of B **orthogonal** (i.e. perpendicular) to the *range* of B^T ? Why or why not? 5. Let $C = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix}$. Find C^{-1} , the inverse of C. 6. Let $D = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$. Find two independent eigenvectors for D. 7. Suppose E is a (2×2) matrix with $E\begin{bmatrix} 1\\1\end{bmatrix} = 2\begin{bmatrix} 1\\-1\end{bmatrix}$, and $E\begin{bmatrix} 1\\-1\end{bmatrix} = -2\begin{bmatrix} 1\\1\end{bmatrix}$. Compute $E^{6}\begin{bmatrix} 1\\0\end{bmatrix}$. 8. Let $P(\mathbf{v})$ be the perpendicular projection of \mathbf{v} onto the line through θ and $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Find the matrix F with $F\mathbf{v} = P(\mathbf{v})$ for all \mathbf{v} in \mathbf{R}^2 . 9. Find the linear combination of $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{w}_2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ which is **closest** to $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$. 10. Find the linear polynomial y = p(t) = a + bt which interpolates the data: | t | 1 | 2 | |---|---|---| | У | 4 | 3 |