Corrected QT interval (QTc) prolongation and syncope associated with pseudohypoparathyroidism and hypocalcemia

Ta Cheng Huang, MD, Frank C. Cecchin, MD, Patrick Mahoney, MD, and Michael A. Portman, MD

An adolescent presented with exercise-associated syncope and electrocardiographic corrected QT interval (QTc) prolongation. Pseudohypoparathyroidism-induced hypocalcemia was diagnosed. The QTc (485 to 505 milliseconds) shortened during normalization of calcium levels, and syncope has not reoccurred. (J Pediatr 2000;136:404-7)

Electrocardiographic corrected QT interval prolongation signifies abnormalities in ventricular repolarization, which are associated with a risk of polymorphic ventricular tachycardia. Clinically, polymorphic ventricular tachycardia can manifest as syncope, seizure, or sudden death. Although QTc prolongation caused by primary or inheritable long QT syndrome has received considerable attention in the medical literature, acquired or secondary QTc lengthening occurs much more frequently.1,2 Pharmacologically induced QTc lengthening by antiarrhythmic drugs such as quinidine and sotalol predominates in the adult population.3 In children and adolescents, other drugs such as cisapride,4 terfenadine,5 and erythromycin6 may be more often implicated. Metabolic abnormalities such as hypocalcemia are routinely mentioned in reviews of QTc prolongation etiologies. However, primary reports of hypocalcemia-induced QTc prolongation are rare and generally involve iatrogenic causes such as aggressive diuretic or dialysis use.7 There are no previous reports of children or adolescents with QTc prolongation associated with syncope and caused by a primary calcium metabolism abnormality. In this report, we describe a child who developed QTc prolongation and syncope as a result of pseudohypoparathyroidism-induced hypocalcemia.

Case Report

A 12-year-old girl with recurrent exercise-induced syncope was referred to Children’s Hospital and Regional Medical Center. She had experienced 3 syncopal episodes in the preceding half year. Each witnessed episode occurred with exertion. No seizure-like activity was observed. The first episode occurred immediately after running to first base during a softball game. On reaching the base, she became dizzy and passed out. No medical consultation was sought. Six months later, she experienced sudden collapse without premonition, while running during a soccer game. A physician bystander could not palpate any pulse. She remained unconscious for about 2 minutes and recovered spontaneously without resuscitation. She was then transported to a nearby hospital, where an electrocardiogram revealed a prolonged QTc of 485 milliseconds. Electrolytes were normal, with a sodium concentration of 139 mmol/L and a potassium concentration of 4.3 mmol/L. She was then referred to Children’s Hospital and Regional Medical Center for cardiac evaluation. Another similar syncopal episode during running occurred before this evaluation and after discharge from the referring hospital.

She had otherwise been healthy except for seizures at 1 year of age, which were believed to be febrile in origin. She had never received any medications. Review of systems revealed the presence of intermittent paresthesias in her legs over an 18-month period. The patient has 2 healthy siblings, aged 4 and 8 years. Both her parents are alive and well, and electrocardiograms

From the Divisions of Cardiology and Endocrinology, and the Department of Pediatrics, University of Washington and Children’s Hospital and Regional Medical Center, Seattle, Washington.

Submitted for publication Feb 4, 1999; revisions received May 20, 1999, and Sept 16, 1999; accepted Sept 29, 1999.

Reprint requests: Michael A. Portman, MD, Children’s Hospital and Regional Medical Center, 4800 Sand Point Way NE, PO Box 5371/CH 11, Seattle, WA 98105-0371.

Copyright © 2000 by Mosby, Inc. 0022-3476/2000/$12.00 + 0 9/22/103447

An adolescent presented with exercise-associated syncope and electrocardiographic corrected QT interval (QTc) prolongation. Pseudohypoparathyroidism-induced hypocalcemia was diagnosed. The QTc (485 to 505 milliseconds) shortened during normalization of calcium levels, and syncope has not reoccurred. (J Pediatr 2000;136:404-7)

Electrocardiographic corrected QT interval prolongation signifies abnormalities in ventricular repolarization, which are associated with a risk of polymorphic ventricular tachycardia. Clinically, polymorphic ventricular tachycardia can manifest as syncope, seizure, or sudden death. Although QTc prolongation caused by primary or inheritable long QT syndrome has received considerable attention in the medical literature, acquired or secondary QTc lengthening occurs much more frequently.1,2 Pharmacologically induced QTc lengthening by antiarrhythmic drugs such as quinidine and sotalol predominates in the adult population.3 In children and adolescents, other drugs such as cisapride,4 terfenadine,5 and erythromycin6 may be more often implicated. Metabolic abnormalities such as hypocalcemia are routinely mentioned in reviews of QTc prolongation etiologies. However, primary reports of hypocalcemia-induced QTc prolongation are rare and generally involve iatrogenic causes such as aggressive diuretic or dialysis use.7 There are no previous reports of children or adolescents with QTc prolongation associated with syncope and caused by a primary calcium metabolism abnormality. In this report, we describe a child who developed QTc prolongation and syncope as a result of pseudohypoparathyroidism-induced hypocalcemia.

Case Report

A 12-year-old girl with recurrent exercise-induced syncope was referred to Children’s Hospital and Regional Medical Center. She had experienced 3 syncopal episodes in the preceding half year. Each witnessed episode occurred with exertion. No seizure-like activity was observed. The first episode occurred immediately after running to first base during a softball game. On reaching the base, she became dizzy and passed out. No medical consultation was sought. Six months later, she experienced sudden collapse without premonition, while running during a soccer game. A physician bystander could not palpate any pulse. She remained unconscious for about 2 minutes and recovered spontaneously without resuscitation. She was then transported to a nearby hospital, where an electrocardiogram revealed a prolonged QTc of 485 milliseconds. Electrolytes were normal, with a sodium concentration of 139 mmol/L and a potassium concentration of 4.3 mmol/L. She was then referred to Children’s Hospital and Regional Medical Center for cardiac evaluation. Another similar syncopal episode during running occurred before this evaluation and after discharge from the referring hospital.

She had otherwise been healthy except for seizures at 1 year of age, which were believed to be febrile in origin. She had never received any medications. Review of systems revealed the presence of intermittent paresthesias in her legs over an 18-month period. The patient has 2 healthy siblings, aged 4 and 8 years. Both her parents are alive and well, and electrocardiograms
demonstrated corrected QT intervals less than 400 milliseconds. There have been no unexplained sudden deaths in the family, which is large on both sides. However, endocrine disorders are present in several family members on both sides. A paternal uncle, paternal aunt, paternal grandmother, and one of the father's cousins have diabetes type II. Also, a paternal uncle and paternal aunt have had goiters and exophthalmus. Additionally, a maternal aunt and uncle have type II diabetes, and another maternal uncle has hyperthyroidism.

Initial physical examination showed her height at 147 cm (3rd percentile or 2 SDs below the mean) and weight at 41 kg (30th percentile for age). The patient was not short, when compared with her parents’ stature. Heart rate was 87 beats/min, and blood pressure was 111/74 mm Hg. Findings on physical examination were normal. An exercise test was performed. She completed a total of 8 minutes of exercise (5th percentile for age and gender) on the treadmill using the Bruce protocol. She had a blunted heart rate response with a maximal heart rate at 133 beats/min. The test was terminated because of fatigue. At rest, her QTc was prolonged at 504 milliseconds with prolongation of the ST segment and normal-appearing T waves (Fig 1). During exercise and recovery, the QTc remained prolonged (range, 485-525 milliseconds). Absolute QT interval decreased from 440 milliseconds to 360 milliseconds. No bizarre T-wave changes were observed, and no arrhythmias were induced.

The patient was initially admitted to the hospital for monitoring and management of a presumed long QT syndrome. No arrhythmias were noted during inpatient monitoring. However, laboratory tests revealed abnormally low serum values for ionized calcium.
There were no syncopal episodes. The ECG QT interval was still within normal limits (Fig 2). There were no syncopal episodes during that period.

DISCUSSION

Syncope and QTc prolongation represent major features of this patient’s clinical presentation. Hypocalcemia-induced ECG abnormalities have been previously described, although they have not been associated with syncope. Reported causes of hypocalcemia-induced QT prolongation include vitamin D-dependent rickets, aggressive diuretic use, and renal dialysis. This electrolyte disturbance causes ST segment alternations in T-wave morphology associated with polymorphic ventricular tachycardia and frequently noted in pharmacologically induced or inherited types of long QT syndrome. However, Bronsky et al have reported T-wave inversions and bizarre morphology in patients with hypocalcemic hypoparathyroidism or pseudohypoparathyroidism. Concurrent magnesium levels were not reported in those patients. Thus the contribution of hypomagnesemia in generating such ECG abnormalities was not clarified. This patient exhibited abnormally low calcium and magnesium serum levels, as well as hyperphosphatemia. Considerable debate has occurred in the past regarding the importance of hypomagnesemia in generating clinically relevant ECG abnormalities or arrhythmias. Although no clear consensus is apparent, most ECG abnormalities in the clinical setting of hypocalcemia and hypomagnesemia are attributed to the former. Because these abnormalities were corrected concurrently in this patient, we cannot definitively eliminate hypomagnesemia as a cause of QTc prolongation.

Pseudohypoparathyroidism refers to a heterogeneous disorder, characterized by hypocalcemia and supranormal plasma parathyroid hormone levels. These findings indicate end-organ resistance to parathyroid hormone. This entity can occur in association with other endocrine abnormalities in the family. This patient presented with clinical features and laboratory data consistent with pseudohypoparathyroidism. Diagnostic criteria included a positive Chvostek sign, an indicator of tetany. Additionally, this patient had disproportionate foreshortening of the fourth metacarpals, a characteristic but inconsistent sign of pseudohypoparathyroidism and the Albright hereditary osteodystrophy phenotype. Management of pseudohypoparathyroidism is directed toward normalization of electrolyte abnormalities. The urgency of treatment is usually directed by findings of tetany. QTc prolongation with clinically important syncope in this patient highlights the need for rapid correction. Although torsade de points was not documented, the combination of exercise-related syncope, pulselessness, and QTc prolongation is highly suggestive that this dangerous ventricular arrhythmia occurred on 3 occasions.

The differential diagnosis for syncope and QTc prolongation includes a broad range of disorders including heritable or new ion channel mutations, as well as pharmacologic or toxic agents, which alter ventricular repolarization. This clinical scenario emphasizes the importance of searching for metabolic disorders such as hypocalcemia after presentation of symptoms and laboratory features mimicking inherited or other acquired forms of long QT syndrome. Rapid normalization of serum electrolytes results in shortening of the QT interval and reduction of the risk for a life-threatening arrhythmia.

REFERENCES

FELLOWSHIPS

Fellowships available in pediatric subspecialties and those for general academic pediatric training are listed once a year, in January, in The Joumal of Pediatrics. Each June, forms for listing fellowships available for the academic year beginning 18 months after publication are sent to the Chairman of the Department of Pediatrics at major hospitals in the United States and Canada. In addition, a copy of the application form appears in the July, August, and September issues of the Journal (please use the current form). Should you desire to list fellowships, a separate application must be made each year for each position. All applications must be returned to Mosby, Inc., by October 15 preceding the listing year to ensure publication. Additional forms will be supplied on request from the Periodical Editing Department, Mosby, Inc., 11830 Westline Industrial Drive, St. Louis, MO 63146-3318 (phone: 800-325-4177, ext. 2838, or 314-579-2838).