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Energetics of Shallow Water (SW) Waves 
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The KE and PE per unit volume are given by 

   
KEV = 1

2
ρu ⋅u , and  PEV = ρgz  

Since properties are independent of depth in shallow water flow it is useful (particularly 
for PE) to consider the depth-integrated energies.  This could be considered the first step 
toward a full volume integral.  Taking the depth integrals, and making approximations 
consistent with the SW equations, we find 

   

KE
unit horiz. area

= 1
2
ρu ⋅u dz

−H

η

∫ ≅ 1
2
ρu2 dz

−H

0

∫ = 1
2
ρu2 H = KEA

SW

PE
unit horiz. area

= ρgz dz
−H

η

∫ = 1
2
ρg η2 − H 2( ) = PEA

SW

 

We can define a zero PE state 
  
PEA0

SW = − 1
2
ρgH 2  which is the PE per unit are when the 

fluid is at rest.  It is then customary to call the variation of the PE away from this the 
"Available PE" or APE.  This implies that it is available to be turned back into KE.  So 
we are left with the important quantity 

  
APEA

SW = PEA
SW − PEA0

SW = 1
2
ρgη2  

note that APE is stored by any surface height anomaly, positive or negative (both will 
give rise to fluid motion, converting APE to KE). 

An important property of SW waves (when they are not affected by Earth's rotation) is 
that they have equal KE and PE.  For progressive SW waves with fields given by 

  

u = u0 cos kx −ωt( )
η =η0 cos kx −ωt( )  

where  ω k = c = gH  and 
  
u0 = c η0 H( )  

then the ratio of the amplitudes of the energies is given by 



 2 

  

KEA0
SW⎡⎣ ⎤⎦

APEA0
SW⎡⎣ ⎤⎦

=

1
2
ρ u0( )2

H

1
2
ρg η0( )2

=
c2 η0 H( )2

H

g η0( )2 =
gH η0 H( )2

H

g η0( )2 = 1  

The property of "equipartition of energy" is true of some other waves, like the deep water 
waves we will study later in the term.  But for SW waves affected by Earth's rotation, 
called Poincare waves, the ratio becomes greater than 1, meaning the energy is mostly 
KE.  This is particularly true of the near-inertial motions often observed in the ocean.  On 
the other hand, for the quasi-geostrophic flows typical of large scale atmospheric and 
ocean flows the energy is dominantly stored in the PE. 

So, we would like to come up with equations governing the evolution of KE and APE in 
the SW equations, and in particular for SW waves.  One way of doing this is to go back 
to the full KE and PE equations and write each term consistent with the SW 
approximations.  However, and easier way to get the same result is to form appropriate 
equations starting from the SW equations themselves.  Here's what you do: 

  

First form  ρgη ηt + Hux = 0( )
which gives  ∂

∂t
1
2
ρgη2⎛

⎝⎜
⎞
⎠⎟
= −ρgHηux APEA

SW

also form  ρHu ut = −gηx( )
to find  ∂

∂t
1
2
ρu2 H

⎛
⎝⎜

⎞
⎠⎟
= −ρgHuηx KEA

SW

 

The most informative way to look at these is to add them together, creating a single 
equation for total energy per unit area, which looks like 

  

∂
∂t

1
2
ρu2 H + 1

2
ρgη2⎛

⎝⎜
⎞
⎠⎟
= −H ρgηu( )x

EA
SW W

m2

⎡

⎣
⎢

⎤

⎦
⎥  

The term on the left is self-explanatory.  To understand the term on the right, let's try 
taking the integral of the equation over some horizontal area - meaning that we have 
taken a complete volume integral.  Assume that the volume is a long channel of y-
direction width B and total length L.  At the left end (x=0) assume that there is an open 
boundary with SW waves propagating into the channel.  Also assume that there is some 
dissipation occurring in the volume that gets rid of the wave energy before it can reflect 
off the (closed) right end.  Then the volume-integrated energy budget would look like: 

  

∂
∂t

1
2
ρu2 H + 1

2
ρgη2⎛

⎝⎜
⎞
⎠⎟

dA
A0

∫ = HBρgη( )× u
x=0

− ρ ε dV
V
∫  
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where   A0  is the horizontal flat plate area of the volume. 

Now we can figure out the physical meaning of the first term on the RHS.  It is the 
"pressure work," expressed here as the area of the open end (HB) times the pressure 
anomaly on that end  

ρgη( ) , which gives a force, times the fluid velocity u through that 
end.  For our progressive SW waves we can easily calculate this pressure work term.  
Typically we are concerned with the time average of this term over many wave periods.  
Let's denote such a "wave average" by angle brackets.  Also note the useful integral: 

  
cos2 ωt( ) ≡ 1

2π ω
cos2 ωt( )dt

t

t+2π ω

∫ = 1
2

 

So the time-averaged pressure work term is given by 

  

HBρgηu
x=0

= 1
2

HBρgη0u0 =
1
2

HBρgη0c
η0

H

= B 1
2
ρg η0( )2⎡

⎣
⎢

⎤

⎦
⎥c

 

The term in square brackets is equal to the wave-averaged total (KE+APE) energy per 
unit area.  This is an example of a rather general property of waves: their energy flux is 
given by the average energy density times the wave speed c.  In our case we have already 
integrated over depth and width, so it is a net flux. 

NOTE: in the more general form of this result we have to use the "group velocity" which 

is defined as 
   
cg = cg

x ,cg
y ,cg

z( ) = ∂ω
∂k

, ∂ω
∂l

, ∂ω
∂m

⎛
⎝⎜

⎞
⎠⎟

.  It happens that for SW waves the group 

velocity  
cg

x  is identical to the "phase speed"  
ω k = cp

x = gH .  The group velocity is the 
speed at which energy travels in waves.  We'll study group velocity again when we get to 
deep water waves. 

The key points to remember from this are that: 

• The wave properties (like the position of a wave crest, or the energy) travel a lot 
faster than the fluid velocity of the wave. 

• The physical mechanism by which wave energy travels through the fluid is by the 
pressure work term.  This allows the fluid to do work on neighboring parcels, 
moving energy around, without having to actually advect the energy around. 


