
 1 

FLUIDS 2009 
Problem Set #3 SOLUTIONS 10/27/2009 

1.i.  The flow is clearly incompressible because 

    
∇iu = ux + vy + wz = A− A = 0  

1.ii.  The equation for a streamline is 
 
dY
dx

= −Y
x

.  Guessing a solution of the form 

 Y = Cxn , this becomes   nCxn−1 = −Cxn−1  which is only satisfied in general if   n = −1.  So 
the equation of the streamlines is 

  Y = C / x  

and choosing different values of C places you on different streamlines. 

1.iii.  Here is a sketch of the flow properties created by the m-file in the Appendix. 

 

The two (red) streamlines have C = 0.1 and C = 1. 
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1.iv.  From the x-momentum equation 

  

Du
Dt

= − 1
ρ
∂p
∂x

⇒ uux = − 1
ρ

px

⇒ px = −ρuux = −ρA2x , and similar reasoning for y-mom gives

py = −ρA2 y

 

Then integrating these gives the two equations: 

  

p = − 1
2
ρA2x2 + F y( )

p = − 1
2
ρA2 y2 +G x( )

 

then making the obvious choices for the unknown functions F and G, gives the pressure 
to within an additive constant: 

  
p = − 1

2
ρA2 x2 + y2( )  

So there is relatively high pressure at the origin, and contours of constant pressure are 
circles, as shown on the diagram above. 

1.v.  In general the acceleration of a parcel is given by 

   
a = Du

Dt
, Dv

Dt
⎛
⎝⎜

⎞
⎠⎟
= uux ,vvy( ) = A2x, A2 y( )  

I have drawn acceleration vectors at two locations on the sketch above.  On the outer 
streamline I chose a point where  y = x .  Here the acceleration vector points directly 
across the streamline, indicating that the parcel acceleration is all going into changing the 
direction of parcel motion, and not its speed.  This is consistent with the pressure gradient 
at this location, which is normal to the direction of parcel motion. 

At the second location, on the inner streamline, I choose a point where   y = x / 10 .  Here 
the direction of the acceleration vector is much more closely aligned with the velocity 
vector, indicating that the acceleration is mainly going into changing the speed of the 
parcel.  This is consistent with the direction of motion being "down the pressure 
gradient." 
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2.i.  Since the solution is a standing wave, assume it has the form given in class: 

  
η =η0 cos kx( )cos ωt( )  

NOTE: you can also have standing waves with other combinations of sines and cosines, 
depending on the phasing of the two waves used to make it. 

The boundary conditions at the two ends of the tanks are that 
  
u x = 0( ) = u x = L( ) = 0 .  

We showed in class from the x-momentum equation that this requires   ηx = 0  at those two 

locations, and note that 
  
ηx = −kη0 sin kx( )cos ωt( ) .  This always satisfies the boundary 

condition 
  
ηx x = 0( ) = 0 .  To satisfy 

  
ηx x = L( ) = 0  requires certain values of the 

wavenumber k, specifically   kL = π ,2π ,3π ,... or 
  
k = π

L
, 2π

L
, 3π

L
,...  Thus we have figured 

out the wavenumbers for acceptable solutions.  To figure out the frequency of each 
solution you can use the fact that for any shallow water wave solution the phase speed 

 
c = ω

k
= gH , and thus 

  
ω = k gH = π

L
gH , 2π

L
gH ,...   The first two of these will 

clearly be the lowest frequencies.  Using subscripts 1 and 2 for these two lowest "modes" 
we have 

Solution # Wavenumber k Frequency ω  Period =  2π /ω  
1   π / L  

  π gH / L  20.2 sec. 

2   2π / L  
  2π gH / L  10.1 sec 

Where we have used the values H=10 m and L = 100 m. 

The patters of surface height for the first two modes look like: 

 

2.ii.  To do the scaling we also have to find the velocity solution.  We did this for the 
progressive wave in class, and use the same method here, starting from the x-momentum 
equation: 
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 ut = −gηx , so… 

  

u = −g( ) ηx dt∫ = −g( ) −kη0( )sin kx( )cos ωt( )⎡⎣ ⎤⎦∫ dt

=
gkη0

ω
sin kx( )sin ωt( ) = η0

H
gH sin kx( )sin ωt( )

 

Note that in the last step we have made use of the relation for the phase speed. 

Now from our solutions and derivatives thereof it is easy to figure out that the scales of 
various terms are 

  

η⎡⎣ ⎤⎦ =η0 , ηt⎡⎣ ⎤⎦ =ωη0 , ηx⎡⎣ ⎤⎦ = kη0

u⎡⎣ ⎤⎦ =
η0

H
gH , ut⎡⎣ ⎤⎦ =ω

η0

H
gH , ux⎡⎣ ⎤⎦ = k

η0

H
gH

 

and thus the ratios of neglected terms to retained terms are given by 

  

MASS:    
ηux⎡⎣ ⎤⎦
ηt⎡⎣ ⎤⎦

=
ηux⎡⎣ ⎤⎦
ηt⎡⎣ ⎤⎦

=
η0

H
= 0.1

X-MOM:    
uux⎡⎣ ⎤⎦
ut⎡⎣ ⎤⎦

=
η0

H
= 0.1

 

so we were reasonably justified in our approximations. Interestingly these answers are the 
same for both of our two solution modes. 

2.iii.  To find the horizontal position of a fluid parcel, call it  xP , just integrate the x-
velocity solution in time: 

  
xP = u dt∫ =

−η0

H
gH
ω

sin kx( )cos ωt( )  

and thus the amplitude is given by 
  

η0

π
L
H

 for the lowest frequency solution, and 
  

η0

2π
L
H

 

for the next higher frequency.  For our lowest mode the amplitude of horizontal motion 
would be (at its greatest) about 3 m.  It is also easy to show that the ratio of this 
amplitude to the length scale of the wave,   k −1 , is given by 

  

η0

H
gH
ω

k −1 =
η0

H
gH

ω / k
=
η0

H
gH
gH

=
η0

H
 for both frequencies. 
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APPENDIX: MATLAB code to make the figure for Problem 1 
 
% ps3_1.m  10/27/2009  Parker MacCready 
% 
% this plots the various properties for the flow field in 
% problem 1 
  
clear 
close all 
% set some stuff to make nicer figures 
fs1 = 14; % fontsize 
set(0,'defaultaxesfontsize',fs1); 
set(0,'defaulttextfontsize',fs1); 
set(0,'defaultaxesfontweight','bold'); 
set(0,'defaulttextfontweight','bold'); 
set(0,'defaultaxesfontname','Ariel'); 
  
% create the axes 
L = 2; % domain limit [m] 
x = linspace(-L,L,20); % x-axis [m] 
y=x; % y-axis [m] 
[X,Y] = meshgrid(x,y); 
% create the velocity field 
A = 1; % [s-1] 
U = A*X; V = -A*Y; % [m s-1] 
  
% Start Plotting 
figure 
  
% First add pressure contours 
rho = 1.2; % density of air [kg m-3] 
P = -0.5*rho*A^2*(X.^2 + Y.^2); % pressure [Pa] to within a constant 
[cc,hh] = contour(X,Y,P,[-5:.5:0],'-b'); 
clabel(cc,hh,'color','b'); 
hold on 
  
% next add velocity vectors 
fact = .1; % this just scales things to they fit 
quiver(X,Y,fact*U,fact*V,0,'-k'); 
% NOTE the 5th argument "0" gets rid of auto-scaling 
% 
% add a scale arrow 
quiver(-.3,.1,fact*1,fact*0,0,'k'); 
text(-.3,.2,'1 m s^{-1}') 
  
% add two acceleration vectors 
afact = 0.5; 
% for a point where y=x 
C = 1; % constant to define a streamline [m2] 
xx = 1; % x-position on that streamline 
yy = C/xx; % y-position on that streamline 
ax = A^2*xx; % x-direction acceleration at that point [m s-2] 
ay = A^2*yy; % y-direction acceleration at that point [m s-2] 
quiver(xx,yy,afact*ax,afact*ay,0,'-m'); 
% same for a different streamline and a point where y=x/10 
C = 0.1; 
xx = 1; 
yy = C/xx; 
ax = A^2*xx; 
ay = A^2*yy; 
quiver(xx,yy,afact*ax,afact*ay,0,'-m'); 
% 
% add a scale arrow 
quiver(-.3,-.1,afact*1,afact*0,0,'m'); 
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text(-.3,-.2,'1 m s^{-2}','color','m') 
  
  
% plot a few streamlines 
xs = linspace(.0001,L,100); 
for C = [0.1 1]; 
    ys = C./xs; 
    plot(xs,ys,'-r','linewidth',2) 
end 
  
% add labels and fix scaling 
axis equal 
grid on 
axis(L*[-1 1 -1 1]); 
xlabel('X'); ylabel('Y') 
% fancy multi-color title 
title(['\color{black}Velocity \color{blue}Pressure [Pa] ', ... 
    '\color{red}Streamlines \color{magenta}Acceleration']) 
  
% and print a copy to a jpeg 
print -djpeg stream.jpg 
 
 


