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FLUIDS 2009 
Midterm Exam Solutions 11/6/2009 

1.i.  The velocity is given by 
  
u,v( ) = Ax,−Ay( ) .  The viscous terms in the momentum 

equations are given by 
  
ν∇2u = ν uxx + uyy( ) = 0  and 

  
ν∇2v = ν vxx + vyy( ) = 0 .  Hence there 

is no viscous contribution to fluid acceleration.  Physically, there are still viscous stresses, 
but they have zero divergence. 

1.ii.  Recall that 
  

p
ρ
= − 1

2
A2 x2 + y2( )  (plus some arbitrary, additive constant) from the 

previous problem set.  The Bernoulli function is given by 

  

1
2

u2 + v2( ) + p
ρ
= 1

2
A2 x2 + y2( )− 1

2
A2 x2 + y2( ) = 0 , which is clearly a constant.  Since 

the flow is 2D there is no need to consider the gz term in the Bernoulli function, or it can 
be absorbed into the constant added to the pressure.  In any case the result indicates that 
the Bernoulli function is constant everywhere, and not just along a streamline. 

1.iii.  The fact that the Bernoulli function is constant everywhere is consistent with the 
assumptions used in the derivation because: 

• the flow is steady 
• the density is constant 
• the flow is inviscid - note that this is not strictly true, but for this particular flow 

we showed in 1.i that viscosity has no influence on the momentum equations, and 
hence it can have no influence on the integral of the momentum equations along 
any path 

• the flow has zero vorticity: note that the only non-zero component of the vorticity 
vector is 

  
k̂ vx − uy( ) = 0  
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2.i.  For parcels at locations (a) and (b) the forces acting on the parcel are just due to 
pressure and viscous stresses.  In the sketch I have assumed no gravity, but if there were 
gravity then the bottom pressure arrow would be a bit bigger than the top pressure arrow. 

 

2.ii.  The x-momentum equation is 
  

Du
Dt

= − 1
ρ

px +ν∇
2u  which for the simple case of 

Poiseuille flow reduces to  uux = − px ρ +νuzz .  This may also be written as 

  

∂
∂x

1
2

u2 + p
ρ

⎛
⎝⎜

⎞
⎠⎟
= νuzz .  Integrating this along a streamline (at constant z), gives: 

  

1
2

u2 + p
ρ

⎛
⎝⎜

⎞
⎠⎟

xA

xB

= νuzz dx
xA

xB

∫ .  And note that from the flow solution  νuzz = px ρ  which is a 

negative constant.  Hence the flow suffers a decrease in Bernoulli function (or "head") 
proportional to the distance travelled.  This should also be apparent from the physical 
situation in which a fluid parcel is always moving down the pressure gradient but 
maintaining the same velocity (in the absence of viscous forces it would have to 
accelerate). 

2.iii.  The dissipation rate is given by 
  
ε = ν uz( )2

=
px

2z2

ρµ
 and so the maximum value 

occurs adjacent to the top or bottom plates, at  z = ±b , hence 
  
εMAX =

px
2b2

ρµ
.  We want to 

write this in terms of the maximum velocity in the flow, which is given by 

  
uMAX = u z = 0( ) = − 1

2
pxb

2

µ
.  Thus we may write the maximum dissipation as 

  
εMAX = 4ν

uMAX( )2

b2 ≅ 4 ×10−2 W
kg

 where we have used the kinematic viscosity 

 ν ≅ 10−6  m2  s-1  which is typical for water.  Then the time required for this to heat water 
by 1 degree K is given by 
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T
1 degree K

=
Cp

εMAX

=
4182 J

kg K

4 ×10−2 J
kg s


105s

1 degree K
 

which is about a day (not a great way to boil water!). 

3.  In the original frame of reference the progressive shallow water wave surface 
elevation and velocity are given by 

  

η =η0 cos kx −ωt( )
u = u0 cos kx −ωt( )  

where  ω k = c = gH  is the phase speed, and 
  
u0 = c η0 H( )  is the magnitude of the 

velocity [a lot smaller than the phase speed]. 

If observe this same wave from a frame of reference moving in the positive x-direction at 
speed c then the fields are 

  

η ' =η0 cos kx '( )
u ' = u0 cos kx '( )− c

   (*) 

where we have used a prime to indicate that these are properties measured in the new 
frame of reference. 

The Bernoulli function at the free surface is given by 

  

1
2

u '2+ p
ρ
+ gz = 1

2
u '2+

pATM

ρ
+ gη '  

Is this a constant?  Plugging in the expressions (*) above we find 

  

1
2

u '2+
pATM

ρ
+ gη ' = 1

2
u0

2 cos2 kx '( ) − u0ccos kx '( ) + 1
2

c2 +
pATM

ρ
+ gη0 cos kx '( )

≅ −u0ccos kx '( ) + 1
2

c2 +
pATM

ρ
+ gη0 cos kx '( )

= 1
2

c2 +
pATM

ρ
= constant

 

So it is constant, but only if we neglect the term with amplitude   u0
2 2 .  We may do so 

because it is small (by the factor 
   η0 H 1) compared to the term   u0c . 
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4.  Consider a volume that encompasses the flow just after it leaves the hose and extends 
to the wall.  The area of the volume on the wall is big enough so that the flow has 
completely been turned to be parallel to the wall. 

 

The volume-integrated equation for x-momentum derived in class is: 

   

d
dt

ρu dV
V
∫ = − ρu( )u ⋅ n̂ dA

A
∫ − pî ⋅ n̂ dA

A
∫ + µ ∇u ⋅ n̂ dA

A
∫  

and we can evaluate each term to  figure out the force on the wall. 

Some observations: 

The flow is steady, so we can ignore the d/dt term on the left side. 

Since the wall is vertical, and we are just concerned with x-momentum we can ignore 
gravity. 

As drawn in the sketch, the water leaving the volume after hitting the wall has   u = 0 , and 
the only non-zero term due to advection of momentum will be 

   
− ρu( )u ⋅ n̂ dA

A
∫ = ρu2 dA

A1

∫ = aρ u1( )2
 

where a is the cross-sectional area of the stream as is leaves the hose, with velocity   u1 . 

The pressure term looks like: 

   

− pî ⋅ n̂ dA
A
∫ = p dA

A1

∫ − p dA
A2

∫
= pATM A1 + p 'a − pATM A2 − p 'dA

A2

∫
= −extra force on wall due to pressure
≡ −FP
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where we have defined p' as the anomaly of the pressure in the fluid away from 
atmospheric pressure (so   p = pATM + p ' ).  Right where the stream leaves the hose we can 
assume that   p ' = 0  because the flow is basically steady and unidirectional, and so parcels 
are not accelerating.  Hence we can ignore the   p 'a  term that arose from the integral over 

  A1 .  Where the water hits the wall the fluid parcels are decelerating, and this leads to a 
positive pressure anomaly on the wall.  From the point of view of the volume integral this 
is a force pushing the fluid to the left, and so for the wall it is a force pushing to the right, 
which we have called  FP .  The total force due to pressure on the wall includes a term due 
to atmospheric pressure, which you could add in for completeness, but it would be 
irrelevant to the ability of the stream of water to push the wall over. 

The viscous terms is only non-zero on the wall side of the volume, and is given by 

   

µ ∇u ⋅ n̂ dA
A2

∫ = µ ∂u
dx

dA
A2

∫
= −force on wall due to vicosity
≡ −FV

 

where we have defined the force on the wall due to viscosity as  FV .  The physical 
interpretation of this term is a little tricky.  You can think of it as viscous transfer of 
momentum when the fluid is very close to the wall.  To estimate how big it is compared 
to the force due to pressure you would have to know more about the details of the flow 
right where it hits the wall.  I expect that it is negligible compared to  FP , but we can 
retain it for completeness.  I would not be unhappy if you assumed the flow was inviscid 
and just ignored this term. 

Now we can figure out the total force on the wall due to the flow, which is given by 

  

0 = aρ u1( )2
− p dA

A2

∫ + µ ux dA
A2

∫

= aρ u1( )2
− FP − FV

= aρ u1( )2
− F

 

where we have defined the total extra force on the wall as  F = FP + FV .  Thus the answer 
is given by 

  

F = aρ u1( )2

= 4 ×10−4  m2( ) 103  kg m−3( ) 4 m2  s-2( )
= 1.6 N
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The most interesting thing about this whole calculation is that we were able to do it 
without knowing the details of the pressure distribution on the wall.  This is an example 
of the power of the volume integral method! 

5.  The total z-direction force balance is a combination of buoyancy pushing up (due to 
the air displaced by the balloon,  gVρAIR ) and gravity pushing down (due to the mass m 
of the boy and the mass of helium gas in the balloon,  −mg − gVρH ). 

  

0 = −mg + gV ρAIR − ρH( )
⇒V = m

ρAIR − ρH( ) =
20 kg

1.2 kg m-3 − 0.2 kg m-3( ) = 20 m3  

so I conclude that the news story was plausible, but still seemed fishy. 

6. Looking forward to your answers! 


