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N denotes the set of natural numbers.

For n ∈ N, denote by 〈n〉 the set {1, . . . , n}.
R denotes the set of real numbers.

C denotes the set of complex numbers.

F denotes R or C.

A matrix is a rectangular array of numbers arranged in rows and
columns.

If a matrix has m rows and n columns, then it is said to be an
m-by-n matrix and its size is m-by-n.

E.g., the matrix

A =

[
1 2 0
−1 i π

]
is a two-by-three matrix.
A square matrix is any matrix with the same number of rows and
columns (unless otherwise noted, all matrices are considered to be
square).
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For any m-by-n matrix A:

aij denotes the (i , j)-entry of A (i.e., the entry in row i , column j).
A> denotes the transpose of A, i.e., A> is the n-by-m matrix whose
(i , j)-entry is aji .

If A is an n-by-n matrix, then

the scalar λ ∈ C is is called an eigenvalue of A if there is a nonzero
vector x such that Ax = λx . The vector x is called an eigenvector of
A associated with λ.
σ (A) denotes the spectrum of a A, i.e.,

σ (A) := {λ ∈ C : det(A− λI ) = 0} = {λ1, . . . , λn}.

ρ (A) denotes the spectral radius of A, i.e., ρ (A) := maxi∈〈n〉 |λi |.

For x ∈ Fn, denote by Dx the diagonal matrix whose (i , i)-entry is xi .

Denote by ei the i th standard basis vector of Rn.

Let e := [1 · · · 1]> ∈ Rn.
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Definition (Nonnegative Matrix)

A real matrix A is said to be nonnegative (A ≥ 0) if aij ≥ 0
∀ (i , j) ∈ 〈n〉 × 〈n〉.

Theorem (Perron-Frobenius [PFT])

If A ≥ 0, then ρ := ρ (A) ∈ σ (A), and there is a nonnegative vector x
such that Ax = ρx.

ρ is called the Perron root (or eigenvalue) of A.

If
∑

i xi = 1, then x is called the Perron vector of A.

(ρ, x) is called the Perron eigenpair of A.
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Applications of PFT:

Continued fractions.

Internet search engines (e.g., Google Matrix).

Resource-allocation in wireless networks.

Probability theory (ergodicity of Markov chains).

Symbolic dynamics/dynamical systems (subshifts of finite type).

Economics (e.g., Okishio’s theorem, Leontief’s input-output model,
Walrasian stability of competitive markets).

Demography (Leslie model).

Ranking methods (e.g., football teams).

Low-dimensional topology.

Statistical mechanics.

Epidemiology (Kermack-McKendrick threshold).

Matrix iterative analysis (Stein-Rosenberg theorem).
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Definition (Stochastic Matrix)

A real matrix A is called

(row) stochastic if A ≥ 0 and
∑

j aij = 1, ∀ i ∈ 〈n〉;
column stochastic if A ≥ 0 and

∑
i aij = 1, ∀ j ∈ 〈n〉; and

doubly stochastic if it is row stochastic and column stochastic.

Stochastic matrices arise in the study of Markov Chains.

Denote by Θn the set of all complex numbers λ such that λ is an
eigenvalue of some n × n stochastic matrix.

Kolmogorov (1937) posed the problem of characterizing Θn.
Karpelevich (1951) gave an implicit, parametric description of Θn for
every n ∈ N.
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The nonnegative inverse eigenvalue problem (NIEP) is to find
necessary and sufficient conditions on σ = {λ1, . . . , λn} ⊂ C so that
σ is the spectrum of an n × n nonnegative matrix.

The set σ is said to be realizable if there is an n × n nonnegative
matrix with spectrum σ.

If σ is realizable, then:
σ = σ̄ (A real)

sk :=
n∑

i=1

λki ≥ 0, ∀ k ∈ N (Ak ≥ 0)

ρ (σ) := max
i∈〈n〉
|λi | ∈ σ (PFT)

smk ≤ nm−1skm,∀ m ∈ N. (J-LL condition)

Holtz (2004) showed that if σ is realizable, where λ1 = ρ (σ), then
the shifted spectrum {0, λ1 − λ2, . . . , λ1 − λn} satisfies Newton’s
inequalities.
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Boyle & Handelman (1994) characterized the nonzero spectra of
nonnegative matrices.

Stochastic NIEP: Determine necessary and sufficient conditions for
σ = {λ1 = 1, . . . , λn} ⊂ C to be the spectrum of a stochastic
matrix.

The NIEP and the Stochastic NIEP are equivalent.

Real NIEP (RNIEP): Determine necessary and sufficient conditions
for σ = {λ1, . . . , λn} ⊂ R to be the spectrum of a nonnegative
matrix.

RNIEP is unsolved for n ≥ 5.

Symmetric NIEP (SNIEP): Determine necessary and sufficient
conditions for σ = {λ1, . . . , λn} ∈ R to be the spectrum of a
symmetric, nonnegative matrix.

SNIEP is unsolved for n ≥ 5.

It is known that RNIEP and SNIEP are equivalent when n ≤ 4 but
distinct otherwise (Johnson, Laffey, & Loewy 1996).
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Perron Spectratopes
[joint-work w/ Charles R. Johnson]

Herein S is a real, invertible, n-by-n matrix.

Let
C (S) := {x ∈ Rn : SDxS

−1 ≥ 0}.

Since SIS−1 = I ≥ 0 for every invertible matrix, it follows that the
set C (S) is always nonempty.

If α, β ≥ 0, x , y ∈ C (S), then αx + βy ∈ C (S) so that C (S) is a
convex cone.

Notice that coni (e) ⊆ C (S).
We refer to C (S) as the (Perron) spectracone of S .

Definition (Polyhedron & Polytope)

A polyhedron is any set of the form P(A, b) := {x ∈ Rn : Ax ≤ b},
where A is an m-by-n real matrix and b ∈ Rm. A polyhedral cone is any
polyhedron of the from P(A, 0). A polytope is a bounded polyhedron.
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For k ∈ 〈n〉, let Pk be the (n − 1)-by-n matrix obtained by deleting
the k th-row of I and define πk : Rn −→ Rn−1 by πk(x) = Pkx .

Let
P (S) := {x ∈ C (S) : x1 = 1}

and
P1(S) := {y ∈ Rn−1 : y = π1(x), x ∈ P (S)}.

Since SIS−1 = I ≥ 0 for every invertible matrix S , it follows that
P (S) is always nonempty; if n ≥ 2, then P1(S) is always nonempty.

The sets P (S) and P1(S) are polytopes.

We refer to P (S) as the (Perron) spectratope of S and P1(S) as
the projected (Perron) spectratope of S .
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Definition

Given v1, . . . , vn ∈ Rn and α1, . . . , αn ∈ R, the linear combination
∑
αivi

is said to be a

conical combination if αi ≥ 0 for all i ∈ 〈n〉; or a

convex combination if αi ≥ 0 for all i ∈ 〈n〉 and
∑
αi = 1.

The conical hull of the vectors v1, . . . , vn ∈ Rn is the set

coni (v1, . . . , vn) :=
{∑

αivi ∈ Rn : αi ≥ 0
}
.

The convex hull of the vectors v1, . . . , vn ∈ Rn is the set

coni (v1, . . . , vn) :=
{∑

αivi ∈ Rn : αi ≥ 0,
∑

αi = 1
}
.
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Definition

A matrix S is a called Perron-similarity if coni (e) ⊂ C (S).

Theorem

A matrix S is a Perron-similarity iff there is an i ∈ 〈n〉 such that Sei and
e>i S−1 are both nonnegative.

Proof.

Necessity. If coni (e) ⊂ C (S), then there is a vector x 6= e such that
A := SDxS

−1 ≥ 0. Following the PFT, there is an i ∈ 〈n〉 such that Sei
and e>i S−1 are both nonnegative.
Sufficiency. If x := Sei ≥ 0 and y> := e>i S−1 ≥ 0, then
SDeiS

−1 = xy> ≥ 0. Thus, coni (e) ⊂ C (S).
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Theorem

Let

S =

 s>1
...
s>n

 .
If y> := e>i S−1, then y ≥ 0 if and only if ei ∈ coni (s1, . . . , sn).
Moreover, y > 0 iff ei ∈ int (coni (s1, . . . , sn)).

Corollary

If

S =

 s>1
...
s>n

 and (S−1)> =

 t>1
...
t>n

 ,
then S is a Perron-similarity iff there is an i ∈ 〈n〉 such that
ei ∈ coni (s1, . . . , sn) and ei ∈ coni (t1, . . . , tn).
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A Hadamard matrix (of order n) is an n-by-n matrix with entries in
{±1} that satisfies the matricial equation XX> = nI .

Let H0 = [1], and for n ∈ N, let

Hn :=

[
Hn−1 Hn−1

Hn−1 −Hn−1

]
. (Sylvester construction)

It is well-known that Hn is a Hadamard matrix for every n ∈ N0.

The matrix Hn, n ∈ N0 is called the Sylvester-Hadamard or Walsh
matrix of order 2n.

Theorem

The spectracone of the Walsh matrix of order 2n is the conical hull of its
rows.

Corollary

The spectratope of the Walsh matrix of order 2n is the convex hull of its
rows.
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NIEP = RNIEP = SNIEP: n = 2

−2 −1 0 1 2
−2

−1

0

1

2

C(H1)

P(H1)

P1(H1)

x1

x2

Figure: H1 =

[
1 1
1 −1

]
.
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RNIEP: n = 3

Let

S :=

1 1 0
1 −1 0
0 0 1

 and P :=

1 0 0
0 0 1
0 1 0

 .
For a ∈ [0, 1], let b := 1− a and

Sa :=

1 1 0
1 −a 1
1 −a −1

 .
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−1 −0.5 0 0.5 1

−1
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0.5

1

(−a,−b)

(−a, b)

x1

x2

P1(S)

P1(SP)

P1(Sα)

Figure: RNIEP & SNIEP for n = 3.
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NIEP: n = 3

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

P(F3)

<(λ)

=(λ)

Figure: F3 =

1 1 1
1 ω ω2

1 ω2 ω

.
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RNIEP: n = 4
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Figure: P1(H2).
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NIEP: n = 4

Egleston et al. (2004) posed the problem of finding a geometric
representation in R3 of all sets of the form {1, λ, α + iω, α + iω}
which are solutions to the NIEP.

Torre-Mayo et al. (2007) posed the problem of finding necessary and
sufficient conditions on a set {k1, . . . , kn} ⊂ R, so that

p(x) := xn + k1x
n−1 + k2x

n−2 + · · ·+ kn

is the characteristic polynomial of a nonnegative matrix of order n,
and solved the problem for the case when n = 4 (44 pages).

Benvenuti (2014) solved the problem posed by Egleston et al. using
the main result from Torre-Mayo et al (18 pages).
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NIEP: n = 4
Θ4

Figure: Θ4
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NIEP: n = 4

(a) Via Spectratopes (b) Benvenuti
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Other work

Generalize previous technique for n ≥ 5.

SNIEP: characterize the spectratopes of Householder
transformations: H = I − 2(vv>), v>v = 1.
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