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Summary. In vaccine research, immune biomarkers that can reliably predict a vaccine’s effect on the clinical endpoint (i.e.,
surrogate markers) are important tools for guiding vaccine development. This article addresses issues on optimizing two-phase
sampling study design for evaluating surrogate markers in a principal surrogate framework, motivated by the design of a future
HIV vaccine trial. To address the problem of missing potential outcomes in a standard trial design, novel trial designs have
been proposed that utilize baseline predictors of the immune response biomarker(s) and/or augment the trial by vaccinating
uninfected placebo recipients at the end of the trial and measuring their immune biomarkers. However, inefficient use of
the augmented information can lead to counter-intuitive results on the precision of estimation. To remedy this problem, we
propose a pseudo-score type estimator suitable for the augmented design and characterize its asymptotic properties. This
estimator has superior performance compared with existing estimators and allows calculation of analytical variances useful
for guiding study design. Based on the new estimator we investigate in detail the problem of optimizing the sampling scheme
of a biomarker in a vaccine efficacy trial for efficiently estimating its surrogate effect, as characterized by the vaccine efficacy
curve (a causal effect predictiveness curve) and by the predicted overall vaccine efficacy using the biomarker.

Key words: Closeout placebo vaccination; Estimated likelihood; Immune correlate; Principal surrogate; Pseudo-score;
Two-phase sampling design.

1. Introduction
Development of effective vaccines for preventing infectious
diseases such as HIV/AIDS is a challenging task due to the
complexity of the human immune system. In a randomized
trial, identification of immune biomarkers measured after im-
munization that are associated with a vaccine’s protective
effect can be very useful in guiding the vaccine’s develop-
ment (Plotkin, 2010). The research in this manuscript is mo-
tivated by the need to evaluate immune responses as potential
surrogate markers for HIV infection in HIV vaccine efficacy
trials now being planned. Among various frameworks pro-
posed for evaluating surrogate markers in biomedical research
(Prentice, 1989; Freedman, Graubard, and Schatzkin, 1992;
Robins and Greenland, 1992; Daniels and Hughes, 1997;
Lin, Fleming, and De Gruttola, 1997; Buyse et al., 2000;
Burzykowski, Molenberghs, and Buyse, 2005; Joffe and
Greene, 2009; Li et al., 2010, 2011), we use the principal sur-
rogate framework (Frangakis and Rubin, 2002), which is par-
ticularly advantageous for the motivating HIV application as
has been discussed in previous work including (Gilbert et al.,
2011a; Gilbert, Hudgens, and Wolfson, 2011b).

Study design and characteristics play an important role in
principal surrogate evaluation. Principal surrogate estimands
are defined conditional on an individual’s potential biomarker
values given vaccine or placebo, and thus are generally not

identifiable from observed data in standard randomized trial
designs. Gilbert and Hudgens (2008), Wolfson and Gilbert
(2010) and others have focused on the special case, com-
mon in HIV vaccine trials, where there is no variability in
the immune biomarker values of placebo recipients. In this
setting estimands of surrogate effects are defined conditional
on vaccine-induced immune responses only. Two of such esti-
mands we focus on in this article are the vaccine efficacy curve
(also called the “principal effect” curve (Frangakis and Rubin,
2002) or the “causal effect predictiveness” curve (Gilbert and
Hudgens, 2008)) and the predicted overall vaccine efficacy.
However, even in this relatively simple setting, these princi-
pal surrogate estimands of interest remain nonidentifiable in
standard vaccine trials.

Realizing the limitation of a standard trial design for
immune surrogate evaluation, Follmann (2006) proposed
two ways to enhance the study design using baseline im-
munogenicity predictors (BIPs) and an approach he termed
“closeout placebo vaccination” (CPV). The BIP strategy
develops an imputation model for unobserved immune
biomarkers based on the observed relationship between base-
line covariates and biomarker values. However, this approach
only identifies the principal surrogate estimands under strong,
untestable assumptions made on the risk model (Gilbert and
Hudgens, 2008). A more direct solution for the missing data

C© 2013, The International Biometric Society 1



2 Biometrics

problem is CPV, which augments the design by vaccinating
uninfected placebo recipients at the end of the trial and mea-
suring their subsequent biomarker values. The values are then
treated as if they had been recorded from subjects assigned to
vaccine at the beginning of the trial (Follmann, 2006). Under
certain assumptions such as equal early clinical risk and time
constancy as will be detailed in the article, the inclusion of
the CPV component allows nonparametric estimation of dis-
ease risks under each assignment of vaccine or placebo, which
makes the evaluation of risk model assumptions possible.

Despite its appealing potential to increase identifiability,
little research has been done to ascertain the gains in esti-
mation efficiency which may be possible using CPV. What
estimation method to use in this novel design and how to
optimize the sampling of immune biomarkers for better ef-
ficiency in evaluating their surrogate effects are important
questions remaining to be addressed and are the major focus
of this article. The research for this article was motivated by
the planning of a future HIV vaccine efficacy trial in South
Africa, detailed in Gilbert et al. (2011a), where the primary
objective is to evaluate the vaccine efficacy to prevent HIV
infection of multiple prime-boost vaccine regimens versus a
shared placebo group, with assessment of immune surrogates
as a secondary objective. The CPV design was examined for
its capacity in immune surrogates evaluation in the trial plan-
ning. As we will show later in Section 2.2, the additional infor-
mation generated by the augmented component, if not used
efficiently, can lead to counter-intuitive results regarding the
estimation precision. We propose and investigate a pseudo-
score type estimator particularly suitable for the augmented
design. Based on this estimator we investigate in detail the
problem of optimizing the biomarker sampling scheme to ef-
ficiently estimate surrogate effects in HIV vaccine trials. Be-
yond vaccine trials this research has application to surrogate
endpoint evaluation in general clinical trials for which an aug-
mented design akin to CPV is feasible.

In Section 2, we introduce the setting for evaluating prin-
cipal surrogates, describe the utility of the vaccine efficacy
curve and the predicted overall vaccine efficacy for quantify-
ing surrogate effects in HIV vaccine trials, and briefly review
problems in applying existing estimation methods to the aug-
mented design. We then propose a new estimator as a solution
for the augmented design and examine its asymptotic proper-
ties. In Section 3, we evaluate the finite-sample performance
of the proposed estimator and compare its performance with
alternative estimators. In Section 4, we study optimal sam-
pling schemes for estimating principal surrogate effects in the
motivating HIV application using the proposed estimator. Fi-
nally we end the article with a discussion.

2. Method
We consider a two-arm randomized trial. Let Z be the binary
treatment indicator, 0 for placebo and 1 for active treatment
(vaccination). Let W be baseline covariates such as demo-
graphics and laboratory measurements. We focus on discrete
W in this manuscript, but note that the methods we describe
can be generalized to accommodate continuous W by incor-
porating nonparametric smoothing techniques. Let S be the
candidate surrogate of interest measured on the continuous
scale at fixed time τ after randomization. Here we consider

a univariate marker, but the estimation method we propose
could be easily extended to allow for more than one marker.
Let Y denote the binary clinical endpoint of interest, 0 for
nondiseased and 1 for diseased. Acknowledging the possibil-
ity that Y occurs before S is measured, let Y τ be the indicator
of whether disease develops before τ . S is only measurable if
Y τ = 0; if Y τ = 1, then S is undefined. We further incorpo-
rate the potential outcomes framework. Let S(z), Y τ (z), Y (z)
be the corresponding potential outcomes under treatment as-
signment z, for z = 0, 1. If Y τ (z) = 1, S(z) is undefined and
we set S(z) = ∗. We also consider a possible CPV compo-
nent. At the end of the trial followup period, some fraction
of placebo recipients who are uninfected at study closeout
are vaccinated and the immune biomarker Sc at time τ af-
ter vaccination is measured; the proportion of the uninfected
placebo recipients selected for closeout vaccination can range
from 0 to 1.

Following the notation in Follmann (2006), we call the de-
sign with no CPV the BIP-only design (the design with base-
line predictors W only), and the design with nonzero CPV
component the BIP + CPV design. The setting we consider
is a two-phase sampling design. In the first phase, information
about Y , Z , and W are collected for every trial participant.
In the second phase, S(1) or Sc is measured in a subcohort
of study participants selected according to a random mecha-
nism. We let δ to indicate the availability of S(1) or Sc .

Frangakis and Rubin (2002) proposed characterizing the
principal surrogate effect of a marker based on comparison be-
tween the risk of Y (1) and Y (0) conditional on S(1) and S(0).
In HIV vaccine trials, only subjects without previous infection
with the pathogen under study are enrolled such that S(0) =
0; the characterization of surrogate value simplifies to com-
parison between risk(0){S(1)} = P {Y (0) = 1|S(1), Y τ (0) =
Y τ (1) = 0} and risk(1){S(1)} = P {Y (1) = 1|S(1), Y τ (0) =
Y τ (1) = 0}, namely the marginal causal effect predictiveness
curve (CEP ) as proposed in Gilbert and Hudgens (2008)
with CEP {S(1)} = h[risk(1){S(1)}, risk(0){S(1)}] for a pre-
specified contrast function h.

For a rare disease like HIV, one natural choice of CEP
function is the vaccine efficacy (VE) as a function of S(1):

V E{S(1)} = 1 − risk(1){S(1)}
risk(0){S(1)} , (1)

the percent reduction in infection rate for the subgroup of
vaccine recipients with immune response S(1) compared to
if they had not been vaccinated. The vaccine efficacy curve
(curve of VE (s) versus s) tells us the range of vaccine ef-
ficacies we can achieve with respect to HIV infection cor-
responding to varying levels of vaccine-induced immune re-
sponse. For a desired vaccine efficacy level, the corresponding
immune response level helps set the target for refining the
vaccine in follow-up phase I/II studies. A useful surrogate
will have strong effect modification in the sense of large vari-
ability in VE{S(1)} and thus there is potential to achieve
a large vaccine efficacy by increasing the immune responses.
Examples of vaccine efficacy curves for two biomarkers with
the same S(1) distribution are displayed in Figure 1(a) with
the steeper curve (marker 1) corresponding to a more useful
surrogate. In general, the x-coordinates of these curves can be
brought to the same scale through a cumulative distribution
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Figure 1. (a) Vaccine efficacy curves: VE{S(1)} versus
S(1). The grey horizontal line is the vaccine efficacy in the
population defined as 1 − P (Y = 1|Z = 1)/P (Y = 1|Z = 0).
(b) Plot of VE new(Δ) versus Δ (the location shift in im-
mune response for the refined vaccine versus original vac-
cine), under the assumption that P {Y = 1|Z = z, S(1) =
s} = Φ(β0 + β1z + β2s + β3sz) and P {Y = 1|Znew = z, S(1) =
s} = Φ{β0 + β1z + β2s + β3(s + Δ)z}.

function (CDF) transformation to facilitate comparison be-
tween curves.

After we refine a vaccine to achieve certain immune re-
sponse levels in phase I/II trials, the next step is to de-
termine whether the refined vaccine has large enough pre-
dicted vaccine efficacy in a future licensure trial, based on
the change in immune responses we observe in phase I/II
studies through the refinement. The quality of this predic-
tion depends on the surrogacy of the biomarker identified
in the current trial as well as the “bridging” assumption re-
garding the relationship between the vaccine effect on im-
mune response and the vaccine effect on infection rate. For
example, suppose the risk of HIV infection given S(1) and
Z in the current trial can be modeled with risk(1){S(1)} =
Φ{β0 + β1Z + β2S(1) + β3ZS(1)} with Φ the CDF of N(0,1),
and the refined vaccine leads to a location-shift Δ in immune
response distribution relative to the original vaccine. For a
valid bridging surrogate, Follmann (2006) models the HIV in-
fection rate conditional on S(1), the immune response induced
by the original vaccine, and the treatment assignment Znew

in the future trial with risk(z New){S(1)} = Φ[β0 + β1Z
new +

β2S(1) + β3{S(1) + Δ}Znew]. Then the predicted overall ef-
ficacy of the refined vaccine on Y is

V Enew(Δ) = 1 − P (Y = 1|Znew = 1)
P (Y = 1|Znew = 0)

= 1 −

∫
Φ{β0 + β1 + β2s + β3(s1 + Δ)}dF (s1)∫

Φ(β0 + β2s1)dF (s1)
,

(2)

with F {S(1)} the distribution of S(1). This model will be
used later in our simulation studies and study design. In
Figure 1(b), we show the curves of VE new(Δ) as a func-
tion of Δ corresponding to the same two markers whose
vaccine efficacy curves are displayed in Figure 1(a). Note
that the same location shift in the better surrogate marker
(marker 1) corresponds to a higher predicted overall vaccine
efficacy.

We next consider the estimation of VE{S(1)} and
VE new(Δ), by first estimating the disease risk conditional on
S(1) and Z . We make the following assumptions.

2.1 Identifiability Assumptions
(A1) SUTVA and Consistency: {S(1), S(0), Y τ (1), Y τ (0),
Y (1), Y (0)} of one subject is independent of the treatment
assignments of other subjects, and given the treatment a sub-
ject actually received, a subject’s potential outcomes equal
the observed outcomes.

(A2) Ignorable Treatment Assignments: Z ⊥ W, S(1),
S(0), Y τ (1), Y τ (0), Y (1), Y (0).

(A3) Equal Early Clinical Risk: Y τ (1) = Y τ (0) for all
subjects.

Assumptions (A1)–(A3) have been made in earlier litera-
ture (Gilbert and Hudgens, 2008; Hudgens and Gilbert, 2009;
Huang and Gilbert, 2011). Basically, (A1) is plausible in tri-
als where participants do not interact with one another and
(A2) is ensured by randomization. As discussed in Wolfson
and Gilbert (2010), (A3) is plausible if relatively few clinical
events happen before the biomarker is measured. (A3) im-
plies that the risk of Y conditional on Z = z, W , S(1), S(0),
and Y τ (0) = Y τ (1) = 0 can be identified based on the sub-
set of subjects assigned Z = z who are observed to have the
marker measured at time τ (i.e., Y τ = 0), with additional
identifiability assumptions needed as given below. Henceforth
we simplify the notation and drop the conditioning of all prob-
abilities on Y τ (1) = Y τ (0) = Y τ = 0.

Motivated by the design of HIV vaccine trials where S(0) =
0 for all subjects, we focus on risk models conditional on S(1)
only, which is the one most relevant to vaccine development.
In general when S(0) varies, risk conditional on S(1) has the
interpretation of risk conditional on S(1) and S(0) averaged
over the conditional distribution of S(0) and is still useful for
vaccine development (Wolfson and Gilbert, 2010). Next, in
assumption (A4) we posit generalized linear models for risk
conditional on Z , S(1), and W .

(A4) The risk of Y conditional on Z, S(1) and W can
be modeled with a parametric function: risk(z ){S(1), W } ≡
P {Y (z) = 1|S(1), W } = g{β; S(1), Z, W }, with g a prespeci-
fied link function and β a finite-dimensional parameter.

Based on the standard trial design, (A1)–(A4) and the ob-
served data identify risk(0) and risk(1). But since S(1) is unob-
served for all subjects in the placebo arm (Z = 0), one cannot
fully test the appropriateness of the model assumption (A4)
as pointed out in Gilbert and Hudgens (2008). This issue is
resolved with the addition of the CPV component, together
with the assumptions (A5) and (A6) below.

(A5) Time-constancy of immune response: For uninfected
placebo recipients, S(1) = Strue + U1, and Sc = Strue + U2, for
some underlying Strue and i.i.d. measurement error U1, U2.

(A6) No placebo subjects uninfected at closeout have an
infection over the next τ time-units.

Under (A5) and (A6), Sc can be used to substitute S(1)
for these subjects sampled in CPV. The addition of the CPV
component makes (A4) fully testable by allowing nonpara-
metric estimation of the risk model, as sketched in Web
Supplementary Appendix A. Henceforth we simplify the no-
tation and use S to indicate a measurement of vaccine-
induced immune response which can be obtained either during
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standard trial period or during CPV. Let N be the number
of trial participants. The observed data are N i.i.d. copies
Oi = (Zi , Wi , δi , δiSi , Yi )′, i = 1, . . . , N . Finally, we state two
assumptions about the sampling probability of S (either S(1)
or Sc ) required for validity of the pseudo-score estimators de-
scribed later in Section 2.3.

(A7)
∫

P (δ = 1|y, Z, W )dy > 0 for every Z, W level.
(A8)

∫
P (δ = 1|y, z, W )dydz > 0 for every W level.

2.2 Existing Methods and the Motivating Example
Under the two-phase sampling design described earlier, the
vaccine-induced immune response S is missing at random
(MAR) because it is determined completely by design. The
MAR assumption allows identification of the risk model in
(A4) based on observed likelihood

L =
∏
δ i =1

P (Yi |Zi , Wi , Si )
∏
δ i =0

P (Yi |Zi , Wi )

=
∏
δ i =1

P (Yi |Zi , Wi , Si )
∏
δ i =0

∫
P (Yi |Zi , Wi , s)dF (s|Zi , Wi ),

(3)

where F (S|Z, W ) is the CDF of S conditional on Z , W .
Earlier work for identifying risk model parameters in eval-

uating principal surrogate markers was based on an esti-
mated likelihood approach (Pepe and Fleming, 1991) that
maximizes an estimated version of the likelihood (3). Specif-
ically, estimation is performed in two steps. In the first step,
F (S|Z, W ) is estimated; and then in the second step, its es-
timator F̂ (S|Z, W ) is substituted into (3) and β is estimated
as the maximizer of the resulting estimated likelihood. Ap-
proaches to estimating F (S|Z, W ) vary along the spectrum
from nonparametric to parametric (Gilbert and Hudgens,
2008; Qin et al., 2008; Hudgens and Gilbert, 2009; Huang
and Gilbert, 2011). These methods work for both the BIP-
only and the BIP+CPV designs. For both designs, the es-
timation in the first step is achieved using vaccine recipi-
ents with S measured given that F (S|Z = 1, W ) = F (S|Z =
0, W ) = F (S|W ) as ensured by the randomization assumption
(A2). When sampling of S depends on other phase-I vari-
ables such as the response Y , inverse probability weighting
(IPW) (Horvitz and Thompson, 1952) can be implemented
to correct for biased sampling (Gilbert et al., 2011a; Huang
and Gilbert, 2011). Note that in a BIP+CPV design, even if
all CPV samples contribute a full conditional likelihood term
P (Y |Z, W, S) to the estimated likelihood, they cannot be used
for estimating F (S|W ). The fact that all infected placebo re-
cipients have zero sampling probability for S prevents the
application of IPW to the whole S sample in estimating
F (S|W ).

In our motivating design of the South Africa HIV vaccine
trial, Gilbert et al. (2011a) considered incorporating the CPV
component into the trial design and examined power for de-
tecting principal surrogates using a parametric estimated like-
lihood approach. They examined two-phase case-control sam-
pling using either a BIP-only or a BIP+CPV design where
cases and controls were sampled at 1:5 ratio within the vac-
cine arm and controls ten times that of the number of cases
in placebo arm were included in CPV. A surprising finding
was that in some scenarios where W had a strong correla-

tion with S, the BIP-only design was more powerful than the
BIP+CPV design for testing an interaction effect between S
and Z (table 7 of Gilbert et al. (2011a)).

Here we investigate in further detail this seemingly counter-
intuitive result of decreased efficiency caused by adding the
CPV component. We compare variances of the risk model
parameter estimators between the BIP-only design and the
BIP+CPV design with varying ratios of CPV sampling. As
shown in Web Supplementary Figure 1, the efficiency loss of
the BIP+CPV design relative to the BIP-only design becomes
more severe as the proportion of uninfected placebo recipients
selected for closeout vaccination increases. In contrast, as also
shown in Web Supplementary Figure 1, if we enter the “true”
F (S|W ) into the observed likelihood (3), then the BIP+CPV
design is more efficient than the BIP-only design and the effi-
ciency gain increases in general with a higher CPV sampling
fraction, as expected. These results suggest that the decreased
efficiency caused by CPV sampling is due to the fact that two
different sets of “validation data” are used in the two steps
of the estimated likelihood procedure: the CPV component
is included in the validation set in maximizing the likelihood
but not in the estimation of the conditional distribution of S.
This will be further demonstrated in Section 3.

To use the CPV component more efficiently, we need an
estimation method that removes the incompatibility in the
use of validation sets as present in the estimated likelihood
methods. In the next section, we propose a pseudo-score type
estimator as a solution, building upon the original work by
Chatterjee, Chen, and Breslow (2003).

2.3 The Pseudo-Score Estimator for Principal Surrogates
Evaluation

The score equation of the observed likelihood (3) is

∂l(β, F )
∂β

=
∑
δ i =1

Uβ (Yi |Si , Zi , Wi )

+
∑
δ j =0

∫
Uβ (Yj |s, Zj , Wj )P (Yj |s, Zj , Wj )dF (s|Zj , Wj )∫

P (Yj |s, Zj , Wj )dF (s|Zj , Wj )
= 0,

(4)

with Uβ (Y |S, Z, W ) = ∂ log P (Y |S, Z, W )/∂β. Equation (4)
can be further written into the following parsimonious form
incorporating the randomization assumption (A2)

∑
δ i =1

Uβ (Yi |Si , Zi , Wi )

+
∑
δ j =0

∫
Uβ (Yj |s, Zj , Wj )P (Yj |s, Zj , Wj )dF (s|Wj )∫

P (Yj |s, Zj , Wj )dF (s|Wj )
= 0.

(5)

According to Bayes’ theorem, we have

dF (S|W ) =
dF (S|W, δ = 1)P (δ = 1|W )

P (δ = 1|S, W )
. (6)
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Substituting the right-hand side of (6) for its left-hand side
into (5) we arrive at a pseudo-score

∑
δ i =1

Uβ (Yi |Si , Zi , Wi )

+
∑
δ j =0

∫
Uβ (Yj |s, Zj , Wj )

P (Yj |s, Zj , Wj )
P (δ = 1|s, Wj )

dF (s|Wj , δ = 1)∫
P (Yj |s, Zj , Wj )
P (δ = 1|s, Wj )

dF (s|Wj , δ = 1)
.

(7)

We propose to estimate the pseudo-score (7) by first esti-
mating the distribution of S conditional on W based on S
measured in the second phase sample, and then estimating
the sampling probability of S conditional on S and W . The
latter can be estimated as the sampling probability of S
conditional on all covariates and Y together averaged over the
joint distribution of Y and Z conditional on S and W . That is,
P (δ = 1|S, W ) =

∫ ∫
P (δ = 1|y, z, S, W )P (y, z|S, W )dydz =∫ ∫

P (δ = 1|y, z, W )P (y|S, z, W )P (z)dydz. The correspond-
ing pseudo-score estimator is defined as the solution to
(7). Note this proposed estimator is an extended version of
an original pseudo-score estimator proposed by Chatterjee
et al. (2003). We call the original pseudo-score estimator the
PSO estimator and the proposed new estimator the PSN
estimator. Both estimators transforms the task of estimating
the conditional distribution of S in the population into the
task of estimating the conditional distribution of S in the
sample; PSN requires estimation of F (S|W, δ = 1) while PSO
requires estimation of F (S|W, Z, δ = 1) (details provided
in Web Supplementary Appendix B). Note that both PSN
and PSO allow incorporation of the CPV component into
estimation of the distribution of S conditional on W or Z
and W , and can be applied to a design with non-zero CPV
component. The PSO estimator does not, however, apply to
a BIP-only design since F (S|Z = 0, W, δ = 1) is undefined.
In other words, given that risk(z )(S, W ) > 0 almost surely,
validity of PSO requires the sampling probability of S
being greater than zero for every Z, S, W level (assumption
(A7)); in contrast, the PSN relaxes this requirement to
the weaker requirement (A8) that the sampling proba-
bility of S exceeds zero for every S, W level and hence
is applicable to both the BIP-only and the BIP+CPV
designs.

To obtain the PSN estimator, for each unique value w of
W , we estimate F (s|w, δ = 1) empirically with

∑
δ i =1 I(Si ≤

s, Wi = w)/
∑

δ i =1 I(Wi = w). An Expectation-Maximization
(EM) algorithm can be employed to estimate the risk model
parameters β:

(I) Start with an initial value of β;
(II) For a subject i with δi = 1, use its observed data. For

a subject with δi = 0, construct a set of filled-in data with
length equal to the number of observations in VW i

, where
VW i

is the set of validation subjects with δ = 1 and W = Wi .
Specifically, for each j ∈ VW i

, we construct a new observation
{Yi , Sj , Zi , Wi}.

(III) For each filled-in observation {Yi , Sj , Zi , Wi} , j ∈ VW i
,

calculate an associated weight,

P̂ (Yi |Sj , Zi , Wi )/P̂ (δ = 1|Sj , Wi )∑
j∈VW i

P̂ (Yi |Sj , Zi , Wi )/P̂ (δ = 1|Sj , Wi )
,

which is an estimate of the density of Sj conditional
on Yi , Zi , Wi , where P̂ (δ = 1|Sj , Wi ) =

∑1
z =0

∑1
y =0 P̂ (δ =

1|y, z, Wi )P̂ (y|Sj , z, Wi )P (z), with P̂ (δ = 1|y, z, Wi ) a consis-
tent estimate of P (δ = 1|y, z, Wi ) and P̂ (y|Sj , z, Wi ) obtained
based on the current β estimate.

(IV) Fit a weighted GLM to the augmented dataset and
obtain a new estimate of β.

(V) Repeat steps (II) to (IV) until convergence.

Suppose the sampling probability of S conditional on
Y , Z , and W can be modeled with P (δ = 1|Y, Z, W ) =
π(Y, Z, W ; α) for some parameter α. We substitute α with
its maximum likelihood estimator (MLE) α̂ to obtain
P̂ (δ = 1|y, z, w) for computing the pseudo-score (7). For
example, in the simulation studies described next where the
sampling probability of S depends on Y and Z only, we
apply a saturated model for the sampling probability of S
with π = {π(Y, Z)} = {π(0, 0), π(0, 1), π(1, 0), π(1, 1)}, such
that MLE of π(y, z) equals the observed sampling fractions
in the category defined by Y = y and Z = z. Under regu-
larity conditions specified in Web Supplementary Appendix
C, the PSN estimator β̂ can be shown to be consistent
and asymptotically normally distributed. Theorem 1 in
Web Supplementary Appendix C describes the asymptotic
distribution of β̂ with a proof sketched. In our simula-
tion and design studies, we consider a risk model P {Y =
1|S(1), Z, W } = Φ{β0 + β1Z + β2S(1) + β3S(1)Z}. Based on
risk model parameter estimators β̂0, β̂1, β̂2, β̂3, we es-
timate VE{S(1)} with V̂E{S(1)} = 1 − Φ{β̂0 + β̂1 +
β̂2S(1) + β̂3S(1)}/Φ{β̂0 + β̂2S(1)}, and estimate VE new(Δ)

with V̂E
New

(Δ) = 1 − ∫ {β̂0 + β̂1 + β̂2s1 + β̂3(s1 + Δ)}dF (s1)
/
∫

(β̂0 + β̂2s)dF (s1) with prespecified F (s1). Asymptotic

normality of V̂E{S(1)} and V̂E
new

(Δ) follow from Theorem 1.
Their asymptotic variances can be derived based on the Delta
method: var[V̂E{S(1)}] = [∂VE{S(1)}/∂β|β̂ ]T var(β̂)[∂VE

{S(1)}/∂β|β̂ ] and var{V̂E
new

(Δ)} = {∂V Enew(Δ)/∂β|β̂ }T

var(β̂){∂V Enew(Δ)/∂β|β̂ }.

3. Simulation Study
In this section, we evaluate the finite-sample performance of
the PSN estimator and compare it with the estimated likeli-
hood estimator (EL) (Gilbert et al., 2011a). In addition, we
study two other alternatives: the original pseudo-score estima-
tor PSO, and a variant pseudo-score estimator (PSV) where
we transform the task of estimating F (S|W ) into the task
of estimating F (S|W, Z = 1, δ = 1). Details about the deriva-
tion of PSV are provided in Web Supplementary Appendix B.
PSV is included as the closest pseudo-score analogue of EL
from the perspective that both estimators include the CPV
component in the validation set for likelihood maximization
but not for estimation of the conditional distribution of S.
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Our simulation settings are chosen to reflect the charac-
teristics of a typical HIV vaccine trial. We simulate S from a
normal distribution with mean 3 and variance 1, and simulate
a categorical W with four levels derived from discretizing a
normal variable correlated with S (with correlation ρ = 0.5)
by quartiles. We assume a probit risk model of the binary
outcome Y conditional on S, Z , and W : P (Y = 1|S, Z, W ) =
Φ(β0 + β1Z + β2S + β3SZ). The risk model parameters are
chosen such that the probability of infection is 0.12 and 0.06
in the Z = 0 and Z = 1 arms, respectively.

Consider a two-phase sampling design. In phase 1, N =
4000 subjects are randomized in a 1:1 ratio to vaccine (Z = 1)
and placebo (Z = 0). In this phase, W , Z , and Y are ob-
served. In phase 2, stratified Bernoulli sampling of S is con-
ducted as follows: All cases (infected) in the vaccine arm have
S measured, and a portion of controls (uninfected) in the
vaccine arm or placebo arm (the CPV component) have S
measured. The performance of different estimators are com-
pared as a function of two study design parameters: γV,
the average ratio of sampled controls to cases in the vac-
cine arm; and γP, the average ratio of sampled controls in
the placebo arm to cases in the vaccine arm. For each sce-
nario, results are based on 5000 Monte-Carlo simulations.
Note that EL, PSN, and PSV apply to both the BIP-only
and the BIP+CPV designs, whereas PSO applies only to
the BIP+CPV design. When using EL, PSN, or PSV, we
can think of the BIP-only design as a special case of the
BIP+CPV design with γP = 0, and PSN and PSV are equiv-
alent when γP = 0. We evaluate performance for estimat-
ing β0, β1, β2, β3, estimating VE{S(1)} using formulae (1) for
S(1) corresponding to the 90th percentile of the distribution,
and estimating VE new(Δ) using formulae (2) with F {S(1)}
specified to be N(3,1) for a Δ value corresponding to VE new

(Δ) = 0.75.
First, we present efficiency of the proposed PSN estimator

relative to the EL estimator for various combinations of γV

and γP (Table 1). The PSN estimator in general is more effi-
cient than the EL estimator for either the BIP-only (γP = 0)
or the BIP+CPV (γP > 0) design. In particular, dramatic ef-
ficiency gains can be achieved when γP is equal to or larger
than γV .

We then evaluate the finite-sample performance of the
proposed PSN estimator. For different γV and γP val-
ues, Table 2 provides bias, standard deviation, and cov-
erage of 95% Wald confidence intervals based on asymp-
totic variance estimates. The PSN estimator has minimal
biases in all settings. A larger number of S sampled in
particular among vaccinees leads to smaller variance. The
95% Wald confidence intervals based on standard error es-
timates from analytical formulas have accurate coverage in
general.

For comparison among various alternative estimators, Web
Supplementary Figure 2 shows the empirical variance of β3 es-
timators as a function of γV using a BIP-only or a BIP+CPV
design (with γP = 10). The patterns for estimating other
quantities are fairly similar and results are omitted. Corre-
sponding results as a function of γP when γV is fixed at 5
are displayed in Web Supplementary Figure 3. When γV is
small compared to γP , the EL and PSV estimators based
on BIP+CPV can have much larger variance compared to

EL based on BIP-only. These two estimators are the only
ones with differential use of the CPV component between
the two steps of estimation, consistent with our conjecture
about the reason for efficiency loss observed with EL in the
BIP+CPV design. This issue is fixed by using PSN or PSO.
Based on PSN, for example, increasing the sampling rate of
the CPV component (i.e., increasing γP ) can lead to a sub-
stantial efficiency gain (up to 16% in our setting) compared to
the BIP-only design (Web Supplementary Figure 2(b)). Also
PSN can have a substantial efficiency gain relative to PSO in
a BIP+CPV design (up to 15% in our setting in Web Supple-
mentary Figures 2(b) and 3(b)).

4. Optimal Two-phase Biomarker Sampling Design
for Estimating the Vaccine Efficacy Curve and
Predicting the Population-average Vaccine Efficacy

In practice, given limited resources for measuring immune
biomarkers, an important decision is how to best allocate re-
sources to maximize efficiency in estimating surrogate effects.
In this section, we use the PSN estimator to help determine
the optimal two-phase sampling scheme for efficient estima-
tion of VE{S(1)} and VE new(Δ). Again consider a two-phase
sampling setting where S is randomly sampled from infected
vaccinees, uninfected vaccinees or uninfected placebo recipi-
ents (the CPV component) separately. For a rare disease like
HIV infection, typically we sample all infected vaccinees avail-
able in the trial. The question is then how to divide the sam-
pling of uninfected subjects between the vaccine and placebo
arms given a fixed overall case-control sampling ratio. In other
words how to choose γV and γP when their sum is bounded
from above. The asymptotic variances for the PSN estima-
tor derived in Section 2.3 can be used to guide the sampling
design.

Before examining the sampling under fixed cost, we first
examine the efficiency change when varying one of γV and γP

while holding the other constant. In Web Supplementary Fig-
ure 4(a), we explore the efficiency gain for estimating various
quantities as γV increases relative to γV = 1, holding γP = 0,
using the same numerical setting as in Section 3. Correspond-
ing results for increasing γP with γV fixed at 1 are shown in
Web Supplementary Figure 4(b). Relative to the BIP-only de-
sign with 1:1 case-control sampling ratio, further increases in
γV have larger impact on estimating the main effect of Z (β1)
and the interaction between Z and S(1) (β3) compared to the
intercept (β0) and the main effect of S(1) (β2). The impact
on estimating VE{S(1)} and VE new(Δ) is in-between. When
fixing γV = 1 but increasing the sampling of the CPV com-
ponent, the pattern is reversed: increases in γP have largest
impact on estimating β0 and β2.

Moreover, given fixed cost for marker sampling, defined as
Cost ≡ γV + γP , we evaluate the efficiency of study designs
with various allocations of γV and γP . Figure 2 shows the
asymptotic efficiency relative to the design with equal γV and
γP . The pattern is similar when Cost is fixed at different lev-
els. In general, a design with larger γP is more efficient for
estimating β0 and β2, whereas a design with larger γV is op-
timal for estimating β1, β3, VE{S(1)}, and VE new(Δ). The
last two quantities are of clinical interest and most relevant
in guiding our study design.
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Table 1
Efficiency of PSN relative to EL

Relative Efficiencya

γV γP β0 β1 β2 β3 VE{S(1)} VE new(Δ)

1 0 1.05 1.08 1.05 1.07 1.08 1.06
1 1 1.03 1.17 1.04 1.18 1.36 1.22
5 0 1.00 1.00 1.00 1.00 0.99 0.99
5 5 1.03 1.07 1.04 1.08 1.08 1.08
10 0 1.00 1.00 1.00 1.00 1.00 1.00
10 10 1.07 1.07 1.08 1.07 1.07 1.08
16.62b 0 1.00 1.00 1.00 1.00 1.00 1.00
16.62b 15.5c 1.07 1.05 1.08 1.05 1.04 1.06
1 2 1.06 1.30 1.08 1.32 1.72 1.43
2 5 1.15 1.32 1.18 1.32 1.44 1.40
1 10 2.23 2.75 2.33 2.76 10.73 3.87
5 10 1.17 1.22 1.19 1.22 1.24 1.26

aEfficiency of PSN relative to EL = var(EL)/var(PSN).
bγV = 16.62 corresponds to sampling all uninfected vaccinees.
cγP = 15.5 corresponds to sampling all uninfected placebo recipients.

Table 2
Finite-sample performance of the PSN estimator

γV γP Expected na
0 β0 β1 β2 β3 VE{S(1)} VE new(Δ)

Bias 1 0 120 −0.0045 0.0049 −0.0003 −0.0012 −0.0157 −0.0231
1 1 240 −0.0030 0.0065 −0.0008 −0.0018 −0.0140 −0.0212
5 0 600 −0.0001 −0.0004 −0.0015 0.0001 −0.0131 −0.0199
5 5 1200 −0.0020 0.0032 −0.0010 −0.0009 −0.0125 −0.0190
1 10 1320 −0.0032 0.0045 −0.0008 −0.0012 −0.0136 −0.0206

10 1 1320 0.0001 0.0007 −0.0016 −0.0002 −0.0125 −0.0191
10 10 2400 −0.0017 0.0021 −0.0010 −0.0007 −0.0113 −0.0172

16.62b 0 1994 0.0009 −0.0036 −0.0019 0.0012 −0.0134 −0.0202
16.62b 15.5c 3854 −0.0013 0.0010 −0.0010 −0.0004 −0.0107 −0.0162

SD 1 0 120 0.244 0.304 0.085 0.106 0.101 0.131
1 1 240 0.236 0.295 0.082 0.103 0.097 0.126
5 0 600 0.238 0.279 0.082 0.097 0.089 0.118
5 5 1200 0.225 0.275 0.078 0.096 0.089 0.117
1 10 1320 0.227 0.289 0.079 0.101 0.093 0.123

10 1 1320 0.232 0.272 0.080 0.095 0.087 0.116
10 10 2400 0.216 0.261 0.075 0.091 0.084 0.111

16.62b 0 1994 0.237 0.274 0.082 0.095 0.087 0.117
16.62b 15.5c 3854 0.208 0.249 0.072 0.087 0.082 0.106

Coveraged 1 0 120 96.0 95.1 95.7 95.5 96.1 96.6
1 1 240 95.5 94.9 95.7 95.3 96.4 96.9
5 0 600 95.4 95.5 95.4 95.5 96.6 96.8
5 5 1200 94.8 94.5 95.2 95.0 96.2 96.7
1 10 1320 94.8 94.8 94.8 94.9 96.4 96.8

10 1 1320 95.3 94.9 95.4 95.2 96.2 96.9
10 10 2400 94.8 94.9 94.9 94.9 96.3 96.9

16.62b 0 1994 95.3 95.3 95.4 95.6 96.7 97.0
16.62b 15.5c 3854 95.1 94.9 95.3 94.9 96.3 96.8

aExpected n0: expected number of uninfected subjects with S(1) or Sc sampled.
bγV = 16.62 corresponds to sampling all uninfected vaccinees.
cγP = 15.5 corresponds to sampling all uninfected placebo recipients.
dCoverage of 95% Wald confidence interval using variance estimate based on analytical formula, assuming parameter estimates are normally

distributed for β0, β1, β2, β3 and assuming logit transformed parameter estimates are normally distributed for VE{S(1)} and VEnew(Δ).

Finally, we examined the impact of the strength of the
baseline predictor W in terms of its correlation with S on
the optimal sampling scheme. Given Cost = 5 and for vari-
ous linear correlations ρ, Figure 3 shows the asymptotic ef-

ficiency of different designs relative to the design with equal
γV and γP for estimating VE{S(1)} and VE new(Δ). For each
measure, it appears that the optimal γV tends to increase
with increased correlation. In other words, when the baseline
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Figure 2. Efficiency of estimators for various designs as γV

varies from 1 to Cost − 1 relative to the design with γV = γP ,
given fixed Cost = γV + γP , for (a) Cost = 5 and (b) Cost =
10, given ρ = 0.5. Relative Efficiency presented is equal to
(variance at γV = γP = Cost/2)/(variance at various γV and
γP = Cost − γV).

Figure 3. Efficiency of estimators for various designs as γV

varies from 1 to Cost − 1 relative to the design with γV = γP ,
given fixed Cost = γV + γP = 5 for different linear correla-
tions ρ, for estimating (a) VE{S(1)} and (b) VE new(Δ). Rel-
ative Efficiency presented is equal to (variance at γV = γP =
Cost/2)/(variance at various γV and γP = Cost − γV).

predictor is highly predictive of the biomarker, less efficiency
is gained by incorporating information from CPV.

5. Discussion
In this article, we investigated an estimation procedure and
sampling scheme for evaluating surrogate markers in an aug-
mented vaccine trial design (the CPV design) where unin-
fected placebo recipients are vaccinated at study closeout and
have their immune responses measured. Motivated by the ob-
servation that incorporating closeout vaccination data into
existing estimation procedures results in increased estimation
error, we proposed a new pseudo-score type estimator appro-
priate for the CPV design. Besides providing a more efficient
use of the augmented data, a contribution of our research to
the surrogate marker problem is the derivation of an analytic
variance estimator which was not achieved with existing esti-
mated likelihood-based methods where inference relies solely
on bootstrap resampling. Compared to the original pseudo-
score estimator in the literature, our proposed estimator is
more efficient since it exploits the marker-treatment indepen-

dence intrinsic in randomized trials. It can also be applied to
both standard and augmented trial designs.

The asymptotic variance developed for the proposed es-
timator is valuable for guiding the immune biomarker sam-
pling scheme. We examined the question of optimally divid-
ing biomarker samples between the CPV component and the
uninfected vaccinees for efficient estimation of the vaccine ef-
ficacy curve and the predicted overall vaccine effect, given
fixed total cost of measuring immune responses. In practice,
there are other costs researchers will want to take into con-
sideration, for example, the additional cost of vaccination and
follow-up associated with the CPV component. The example
in this article based on equal cost between uninfected vac-
cine and placebo recipients can be easily extended to allow
for different costs between the two kinds of samples. At the
same time, because the BIP+CPV design provides a way to
test the modeling assumption (A4) that is unverifiable from
the BIP-only design, in practice one might prefer to collect
ample samples from both the vaccine and placebo arms to
ensure model testing ability, as long as the sacrifice in ef-
ficiency compared to the optimal scheme is relatively small.
All these considerations should be evaluated on a case-by-case
basis. The examples studied in this manuscript suggest that
a design that samples slightly larger numbers of uninfected
vaccinees than placebo recipients are preferred for estimating
the vaccine efficacy curve and predicting the vaccine’s overall
effect on HIV infection.

The model we studied in this manuscript is the risk condi-
tional on treatment Z , baseline covariate W , and the poten-
tial biomarker value given assignment to vaccine S(1). This is
equivalent to the model which further conditions on the po-
tential biomarker value given assignment to placebo S(0), for
the case where S(0) is constant as in our motivating HIV ap-
plication. In cases where subjects have had previous exposure
to similar pathogens such that S(0) has variability, baseline
biomarker measures might be used to substitute for S(0) un-
der a time-constancy assumption that biomarkers measured
at baseline reflect the biomarker value that would have been
measured at time τ , if assigned to placebo. The technique
we used in this manuscript can then be directly applied by
treating S(0) as a part of W . This generalization implies the
method has potential broad applicability for surrogate end-
point evaluation in many types of clinical trials.

The pseudo-score estimator derived in this manuscript ap-
plies when the baseline predictor W is available from ev-
ery trial participant. Future research is warranted to ex-
tend the estimator to more general setting where a sub-
set of W is sampled from the trial cohort and to evaluate
the sampling scheme of W with respect to the efficiency of
estimation.

Finally, the essence of our proposed modification of the
pseudo-score estimator in randomized trials has a much more
general implication in the modeling and estimation of dis-
ease risk. Since baseline covariates included for adjustment
in the risk model are not always strongly correlated with the
immune biomarker to be useful for its prediction, implemen-
tation of some model selection for a parsimonious subset of
W ’s in predicting the vaccine-induced immune response S(1)
could potentially increase efficiency. This is currently under
investigation.
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6. Supplementary Materials
Web Appendices referenced in Sections 2–4 are available
with this article at the Biometrics website on Wiley Online
Library.
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