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Vardi [Ann. Statist. 13 178–203 (1985)] introduced an s-sample biased
sampling model with known selection weight functions, gave a condition
under which the common underlying probability distribution G is uniquely
estimable and developed simple procedure for computing the nonparamet-
ric maximum likelihood estimator (NPMLE) �n of G. Gill, Vardi and Well-
ner thoroughly described the large sample properties of Vardi’s NPMLE,
giving results on uniform consistency, convergence of

√
n ��n − G� to a

Gaussian process and asymptotic efficiency of �n. Gilbert, Lele and Vardi
considered the class of semiparametric s-sample biased sampling models
formed by allowing the weight functions to depend on an unknown finite-
dimensional parameter θ. They extended Vardi’s estimation approach by
developing a simple two-step estimation procedure in which θ̂n is obtained
by maximizing a profile partial likelihood and �n ≡ �n�θ̂n� is obtained
by evaluating Vardi’s NPMLE at θ̂n. Here we examine the large sample
behavior of the resulting joint MLE �θ̂n��n�, characterizing conditions on
the selection weight functions and data in order that �θ̂n��n� is uniformly
consistent, asymptotically Gaussian and efficient.
Examples illustrated here include clinical trials (especially HIV vac-

cine efficacy trials), choice-based sampling in econometrics and case-control
studies in biostatistics.

1. Introduction: semiparametric biased sampling models and the
MLE. Vardi (1985) developed methodology for the s-sample biased sampling
model with known selection bias weight functions. Gilbert, Lele and Vardi
(1999) considered an extension of this model which allows the weight func-
tions to depend on an unknown finite-dimensional parameter θ. This model
comprises three components: a probability measure G defined on a sample
space Y with σ-field of subsets B, a set of nonnegative (measurable) “stra-
tum” weight functions w1� � � � �ws defined on Y×	 and selection probabilities
λi, i = 1� � � � � s, with

∑s
i=1 λi = 1. The parameter θ is common to all s weight

functions wi�·� θ�, which are assumed to be nonnegative and of a known para-
metric form. Let g ≡ dG/dµ for some measure µ dominating G. The data are
assumed to be an i.i.d. sample Xk = �Ik�Yk�, k = 1� � � � � n, from the semi-
parametric biased sampling model P ≡ 
P�θ�G�� θ ∈ 	�G ∈ G, defined on
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X ≡ 
1� � � � � s × Y, with density given by

p�x� θ�G� = p�i� y� θ�G� = λi
wi�y� θ�
Wi�θ�G�

g�y��(1.1)

Here Wi�θ�G� is the ith normalizing function given by

Wi�θ�G� ≡
∫
Y
wi�u� θ�dG�u��(1.2)

assumed to be positive and finite for all θ in the parameter space 	. The
random variable I ∈ 
1� � � � � s denotes the stratum, selected with probability
λi, and, conditional on I = i, the probability measure Fi ofY under the biased
sampling model satisfies

Fi�A�θ�G� ≡W−1
i �θ�G�

∫
A
wi�u� θ�dG�u�� A ∈ B� i = 1� � � � � s�(1.3)

In Vardi’s (1985) original treatment, the weight functions were assumed
completely known (independent of θ), but there are many practical situations
in which a complete specification of the wi’s is too restrictive, but the weight
functions can realistically be assumed to belong to a parametric family. We
illustrate with three examples.

Example 1.1 (Univariate generalized logistic regression model). As des-
cribed in the introduction of Gilbert, Lele and Vardi (1999), the generalized
logistic regression (GLR) model is useful for assessing from viral data taken
from breakthrough infections in preventive human immunodeficiency virus
(HIV) vaccine efficacy trials how vaccine protection against infection varies
by characteristics of challenge HIV. Suppose viruses are ordered by some “dis-
tance,” quantifiable in a variety of ways, for instance by the percent nucleotide
or amino acid mismatch in a particular gene. Let Y ∈ �0�∞� be a random
variable denoting the distance between a virus that has been isolated from an
infected trial participant and the virus strain represented in the vaccine. The
GLR model is an s-sample semiparametric biased sampling model, where s is
the number of intervention arms, G is the distribution of Y in the baseline
placebo group (group s, say) and θ describes how strongly vaccine protection
depends on strain distance. For instance, in the two-sample GLR model, the
groups are vaccine and placebo. Letting Fv denote the distribution of Y in the
vaccine group, the GLR model relates G and Fv in the following way:

Fv�y� =

∫ y
0
exp 
h�u� θ�dG�u�∫ ∞

0
exp 
h�u� θ�dG�u�

� y ∈ �0�∞��(1.4)

where h�y� θ� is a given function (most simply taken to be linear, h�y� θ� = yθ)
and θ is an unknown d-dimensional “differential vaccine efficacy” parameter.
This is a biased sampling model (1.1)–(1.3), with Y = �0�∞�,F1 = Fv,F2 = G,
w1�y� θ� = exp
h�y� θ�, w2�y� θ� = 1 and λi ≡ ni/n, i = 1�2, the sampling
fraction of infections in the trial from group i. After reparametrization, the
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ordinary logistic regression model with case-control sampling of covariates y
can be written in the form of a two-sample GLR model with h�y� θ� = θ1+θT2 y,
where G is the distribution of y for controls.
The general s-sample GLR model is formed by supposing that observations

from the ith sample are distributed i.i.d. Fi with

Fi�y� =
∫ y
0 exp 
hi�u� θ�dG�u�∫∞
0 exp 
hi�u� θ�dG�u�

� y ∈ �0�∞��(1.5)

where G is the (baseline) distribution for the sth sample and hi�y� θ�, i =
1� � � � � s, are given functions. For identifiability and unique estimability, we
take hs ≡ 0, so that Fs = G. A practical choice for the functions 
hi is
hi�y� θ� =

∑d
k=1 hik�y�θk, where the hik are given functions of y independent

of θ.
The GLR model can be used to assess how protection of a vaccine against

any heterogeneous pathogen (not just HIV) depends on features of the
pathogen, and more generally for investigating how the relative efficacy of
two treatments varies by some random variable measured only on disease
cases. Among many applications are the study of the relationship between a
measure of genetic evolution of HIV in an infected person and the relative
efficacy of two antiretroviral regimens, and the study of how the efficacy of a
new treatment relative to a control treatment changes over time. The broad
utility of the GLR model, especially for analyzing clinical trial data, is dis-
cussed more extensively in Gilbert, Self and Ashby (1998) and Gilbert, Lele
and Vardi (1999).

Example 1.2 (Multivariate generalized logistic regression model). Since
HIV vaccine protection may vary with variations in several viral features,
it is of practical interest to assess differential vaccine efficacy by modeling
a multidimensional distance Y ≡ �Y1� � � � �Yk�T according to a GLR model.
This is easily done in the same manner as the univariate model in Example
1.1. For instance, a simple two-sample GLR model with a bivariate distance
is specified by

Fv�y1� y2� =
∫ y1
0

∫ y2
0 exp
u1θ1 + u2θ2 + u1u2θ3dG�u1� u2�∫∞

0

∫∞
0 exp
u1θ1 + u2θ2 + u1u2θ3dG�u1� u2�

(1.6)

for y1� y2 ∈ �0�∞�. This is a two-sample biased sampling model with Y =
�0�∞�×�0�∞�, d = 3, w1�y� θ� = exp
y1θ1+y2θ2+y1y2θ3 and w2�y� θ� ≡ 1.
The interaction parameter θ3 will be zero if and only if the sum of the marginal
vaccine effects against a strain with Y1 = y1 and a strain with Y2 = y2 equals
the joint vaccine effect against a strain with Y1 = y1 and Y2 = y2. Setting
y1 = 0 �y2 = 0� recovers the marginal univariate GLR model for Y2 �Y1�.
The full k-variate GLR model applies to random variables defined on Y =

�0�∞�k, and can be laid out similarly to (1.6), with (k2) two-way interaction
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parameters,
(
k
3

)
three-way interaction parameters and so on. Parsimonious

versions can be considered by setting various interaction parameters to zero.

Example 1.3 (Choice-based sampling in econometrics; case-control studies
in biostatistics). This example is adapted from Example 4.4 of Gill, Vardi and
Wellner (1988). Suppose that X = �J�Y�, where J is discrete with values on

1� � � � �M and Y ∼ G with density g with respect to µ is a covariate vector
with values in Y ⊂ some Rd. The prospective, unbiased model H has density
h�j�y� = pθ�j�y�g�y�, so that

H�
j ×A� =
∫
A
pθ�j�y�dG�y�

for j = 1� � � � �M and A ∈ B�Rd�, where pθ�j�y� = Pθ�J = j�Y = y� is
a parametric model. The multinomial logistic regression model is a common
choice of pθ, given by

pθ�j�y� =
exp�αj + βTj y�∑M
j′=1 exp�αj′ + βTj′y�

�(1.7)

with θ = �α�β� ∈ R�d+1�M, αM = βM = 0.
The retrospective, biased sampling model F is obtained from H by the

biasing functions wi�y� = 1Di�y�, where Di ⊂ 
1� � � � �M for i = 1� � � � � s.
For instance, consider the “pure choice-based sampling model” as described in
Cosslett (1981), where the strataDi are defined byDi ≡ 
i, i = 1� � � � � s ≡M.
As in Gill, Vardi and Wellner [(1988), page 1094], Vardi’s (1985) necessary and
sufficient condition for identifiability of G fails. Manski and Lerman (1977)
avoid this problem by assuming that the “aggregate shares”

H�j� θ�G� ≡H�
j × Y� θ�G� =
∫
Y
pθ�j�y�dG�y�� j = 1� � � � �M�(1.8)

are known. For this biasing system, one can view F as a biased distribution
derived from G with new weight functions w'j�y� θ� = pθ�j�y�, j = 1� � � � �M.
Then G in model (1.1)–(1.3) is usually identifiable, as all that is required is∫
1�pθ�j�y�>0�pθ�j�y�dG�y� > 0, j = 1� � � � �M (see Proposition 1.1 of Gill, Vardi
and Wellner (1988)). If θ is known, the methods of Vardi (1985) and Gill, Vardi
and Wellner (1988) apply. However, in many practical applications θ will be
unknown. Since all M weight functions depend on θ, the resulting model is
not a member of the class of biased sampling models primarily studied here,
in which one weight function is independent of θ. However, the extra assump-
tion that the normalizing constants H�j� θ�G� are known implies that the
estimation procedure considered here still produces the maximum likelihood
estimator (MLE) of �θ�G�, with limiting behavior characterized by results
given here.
The pure choice-based sampling design is also frequently used in case-

control studies in biostatistics, where the j’s often represent different disease
categories. In the biostatistics application, the aim is to estimate the odds ra-
tios 
βj of (1.7). Given knownH�j� θ�G� as in (1.8), the asymptotic behavior
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of these odds ratios and G are described by results developed here. The re-
sults also apply to choice-based models with general Di’s for which the biased
distribution F has density

f�i� j� y� = λi
1Di�j�pθ�j�y�g�y�∫ ∑M

j′=1 1Di�j′�pθ�j′�y′�g�y′�dµ�y′�

≡ λi
w''i �j�y� θ�g�y�∫ ∑M

j′=1w
''
i �j′� y′� θ�dG�y′�

�

(1.9)

Other examples and applications of semiparametric biased sampling models
are described in Gilbert (1996) and Gilbert, Lele and Vardi (1999). Before
presenting methodology for estimation of θ andG in these models, we note that
Qin (1998) considered the closely related semiparametric two-sample density
ratio model. Our approach resembles that taken by Qin (1998) in its utilization
of a profile likelihood, but substantially differs in that it explicitly extends the
original approach of Vardi (1985) and Gill, Vardi and Wellner (1988), thereby
including estimation of the normalizing constants as a central component. In
addition, the treatment here is more general in that s samples rather than
two are handled, and arbitrary selection weight functions are allowed.
The first matter at hand is identifiability. As Gill, Vardi and Wellner (1988)

is repeatedly referenced, henceforth it is abbreviated GVW.

1.1. Identifiability. In the case of known θ, GVW characterized necessary
and sufficient conditions for G to be identifiable, namely, that the sample
space Y equals [y� wi�y� θ� > 0 for some i = 1� � � � � s] and a certain graph is
connected. For fixed θ ∈ 	, define a graph G'�θ� on the s vertices i = 1� � � � � s
by identifying vertex i with k if and only if

∫
1�wi�y�θ�>0�1�wk�y�θ�>0� dG�y� > 0�

The graph G'�θ� is connected if every pair of vertices is connected by a path.
In what follows, assume these conditions hold for all θ in some neighborhood
	0 ⊂ 	 of the true θ0. Notice that these two conditions hold automatically if
all of the weight functions are strictly positive.
Now consider identifiability of unknown θ and G. When there is only one

sample, the model is rarely identifiable. To our knowledge, the only class of
one-sample models (with no restrictions on G) known to be identifiable are
those with weight function whose domain depends on θ [see Gilbert, Lele and
Vardi (1999), Theorem 1]. For the s-sample model, with s ≥ 2, a large class of
models is identifiable. When one of the weight functions is independent of θ,
the class of identifiable models can be characterized by a simple condition on
the weight functions. The following result is proved in Gilbert, Lele and Vardi
(1999).
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Theorem 1.1. Let s ≥ 2, with ws independent of θ. Suppose the sample
space Y equals

⋃s
i=1�y� wi�y� θ� > 0 for all θ ∈ 	� and G'�θ� is connected

for all θ in some neighborhood 	0 ⊂ 	 of the true θ0. Then the s-sample
biased sampling model is identifiable if and only if the following condition
holds: for all θ̃� θ ∈ 	0 with θ̃ �= θ, there is at least one weight function wi,
i ∈ 
1� � � � � s− 1, such that wi�y� θ̃� and wi�y� θ� are linearly independent as
functions of y.

Gilbert, Lele and Vardi (1999) describe a large class of models that satisfy
the conditions of Theorem 1.1. For instance, all interesting GLR models are
identifiable by this theorem.
Henceforth, assume the identifiability conditions of Theorem 1.1, so that we

consider identifiable biased sampling models (1.1)–(1.3) with multiple samples,
in which at least one of the weight functions is independent of θ. In fact,
throughout we require that the sth weight function is constant, which is used
to ensure unique estimability by the employed estimation procedure.

1.2. Maximum likelihood estimation. The MLE that we study is computed
by a procedure introduced by Gilbert, Lele and Vardi (1999). We sketch it
here. Following their notation, denote the size of the ith sample by ni, the
total sample size by n =∑si=1 ni, and the ith sampling fraction by λni = ni/n.
Let t1� � � � � th be the distinct observed Y values, with multiplicities r1� � � � � rh.
Let nij, i = 1� � � � � s, j = 1� � � � � h, be the number of observations from the ith
group with value tj. Notice that h is random. Then the likelihood of the data
observed according to (1.1)–(1.3) is

Ln�θ�G�x� =
s∏
i=1

h∏
j=1

[
wi�tj� θ�G
tj
Wi�θ�G�

]nij
�(1.10)

where x represents dependency on the observed data 
Xk = �Ik�Yk�� k =
1� � � � � n, equivalent to 
tj� nij� i = 1� � � � � s� j = 1� � � � � h. Define wij�θ� =
wi�tj� θ�. Consider a partial likelihood defined by

Ln1�θ�V�x� =
s∏
i=1

h∏
j=1

[
wij�θ�V−1i∑s

k=1 λnkwkj�θ�V−1k

]nij
�(1.11)

with V = �V1� � � � �Vs�T given by Vi =Wi�θ�G�/Ws�θ�G�, i = 1� � � � � s, where
the dependency of Vi on θ and G is suppressed. Notice that Ln1 depends on
G only through the normalizing constants. When ws is a constant function
(or when ws depends on θ but Ws�θ�G� is a known constant), the following
maximum partial likelihood estimation procedure yields the estimate �θ̂n��n�
which maximizes the full likelihood:

1 Maximize Ln1 over θ andV, subject toV1 > 0,V2 > 0� � � � �Vs−1 > 0,Vs = 1
to obtain �θ̂n��n�.

2 Compute Vardi’s NPMLE �n ≡ �n�θ̂n� from data with “known” weight func-
tions wi�·� θ̂n�.



SEMIPARAMETRIC BIASED SAMPLING MODELS 157

3 Estimate Wi by �ni ≡�ni�θ̂n� =
∫
wi�u� θ̂n� d�n�u�, i = 1� � � � � s.

The key assumption for this procedure to produce the unique maximum is
that a graphical condition holds, defined in Vardi (1985) and restated here.
For fixed, known θ ∈ 	, consider the graph G�θ� on the s vertices i = 1� � � � � s
defined as follows. Define a directed edge from a vertex i to a vertex k, i↔ k,
if and only if

∑h
j=1wij�θ�nkj > 0. The graph G�θ� is strongly connected if, for

every pair �i� k�, there exists a directed path from i to k and a directed path
from k to i.
Theorem 1.2, proved in Gilbert, Lele and Vardi (1999), asserts that the

above estimation procedure yields the MLE of �θ�G�.

Theorem 1.2. Suppose s ≥ 2 with ws a constant function, and the iden-
tifiability conditions of Theorem 1.1 hold. Further suppose the graph G�θ�
is strongly connected for all θ in some neighborhood 	0 ⊂ 	 of θ0, and that
�θ̂n��n��n� is obtained from procedure 1–3. If �θ̂n��n� uniquely maximizes the

partial likelihood (1.11), then �θ̂n��n� uniquely maximizes the full likelihood
Ln�θ�G�x� of (1.10).

Procedure 1–3 can be carried out as follows. Step 1 can be accomplished via
profile likelihood. For fixed θ ∈ 	, let �n�θ� = ��n1�θ�� � � � ��ns−1�θ��1�T be the
unique solution of

�ni�V1�θ�� � � � �Vs�θ�� ≡ V−1i �θ�
h∑
j=1

rjwij�θ�∑s
k=1 nkwkj�θ�V−1k �θ�

= 1�(1.12)

i = 1� � � � � s − 1, in the region V1�θ� > 0� � � � �Vs−1�θ� > 0, Vs = 1. Vardi
(1985) proved that (1.12) has a unique solution if and only if the graph G�θ�
is strongly connected. The estimator θ̂n is the argument which maximizes the
profile partial likelihood Ln1pro defined by

Ln1pro�θ�x�=Ln1pro�θ��n�θ��x�

=
s∏
i=1

h∏
j=1

[
wij�θ��−1ni �θ�∑s

k=1 λnkwkj�θ��−1nk�θ�

]nij
�

(1.13)

Set �n = �n�θ̂n�. Then Step 2 proceeds by setting p̂ = p�θ̂n�, where

pj�θ� ∝ rj
/ s∑
k=1
nk wkj �θ��−1nk�θ�� j = 1� � � � � h�

Hence, �n�A� ≡ �n�A� θ̂n� = 1
n

∑h
j=1 1A�tj�p̂j is Vardi’s NPMLE evaluated at

θ̂n, which exists uniquely if G�θ̂n� is strongly connected. The semiparametric
MLE �n is written explicitly as

�n�A� =
1
n

∑h
j=1 1A�tj�rj

[∑s
k=1 λnk wkj �θ̂n��−1nk �θ̂n�

]−1
1
n

∑h
j=1 rj

[∑s
k=1 λnk wkj �θ̂n��−1nk �θ̂n�

]−1 �
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The semiparametric MLE can also be written in terms of the empirical mea-
sure �n, defined by

�n�A� =
1
n

s∑
i=1

ni∑
j=1
1A�Yij� =

s∑
i=1
λni
1
ni

ni∑
j=1
1A�Yij� =

s∑
i=1
λni�ni�A�(1.14)

for A ∈ B, i = 1� � � � � s, where Yij is the jth observation from sample i. We
have

�n�A� =
∫
A

[∑s
k=1 λnkwk �y� θ̂n��−1nk �θ̂n�

]−1
d�n�y�∫

Y

[∑s
k=1 λnkwk �y� θ̂n��−1nk �θ̂n�

]−1
d�n�y�

�(1.15)

The above procedure 1–3 is computationally attractive because it only requires
calculation of Vardi’s NPMLE �n one time; once �θ̂n��n� is obtained, p̂ is ob-
tained through substitution only. Thus, in essence, the procedure only requires
maximizing a function over a finite-dimensional parameter space and solving
a system of equations of fixed �s− 1� dimension.
This paper is organized as follows. For identifiable s-sample semiparamet-

ric biased sampling models, s ≥ 2, with ws a constant function, large sample
properties of the MLE are developed in Sections 2 through 6. We begin in
Section 2 by discussing conditions for unique estimability of the model in the
limit with probability 1. Section 3 provides heuristic discussion of the approach
taken and defines notation. In Section 4, information bounds for estimation of
θ and G are calculated. Then results parallel to GVW’s results on consistency,
asymptotic normality and efficiency are given in Section 5. An asymptoti-
cally consistent estimator of the limiting covariance process is constructed by
substitution of the MLE into the inverse generalized Fisher information. In
Section 6, the theorems derived in this paper are applied to the examples in-
troduced in Section 1. Proofs are presented in Section 7. Concluding comments
and open problems are discussed in Section 8.

2. Estimability and uniqueness. Under what conditions does the like-
lihood (1.10) have a unique maximum in �θ�G� with probability 1 as n→∞?
As stated in Theorem 1.2, the problem of maximizing the likelihood is equiv-
alent to maximizing the partial likelihood (1.11), which can be accomplished
by maximizing the profile partial likelihood (1.13). Thus our approach is to
identify mild conditions under which the profile partial likelihood (1.13), and
hence the full likelihood (1.10), has a unique maximum with probability 1.
For known θ, Vardi [(1985), Lemma, page 197] showed that if the graph

G'�θ� is connected, then a unique solution �n�θ� of (1.12) exists with proba-
bility 1 as n → ∞. Therefore, assuming the graph G'�θ� is connected for all
θ in some neighborhood 	0 ⊂ 	 of θ0, the first step in maximizing the profile
partial likelihood always works when the sample size is large. Then the profile
partial likelihood will have a unique maximum in θ with probability 1 as n
grows large if the limiting log profile partial likelihood is strictly concave on
	. Thus we have proved the following theorem.
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Theorem 2.1 (Unique estimability via maximum partial likelihood estima-
tion). Suppose s ≥ 2� ws is a constant function� the identifiability conditions
of Theorem 1.1 hold� and for each i = 1� � � � � s, ni→∞ and λni→ λi > 0. Fur-
ther suppose the limiting log profile partial likelihood is strictly concave on 	.
Then with probability converging to 1� the likelihood �1�10� has a unique max-
imum, which can be obtained by the maximum partial likelihood estimation
procedure 1–3.

Henceforth assume the data and weights satisfy the hypotheses of The-
orem 2.1, so that the s-sample biased sampling model is identifiable and
uniquely estimable asymptotically. For this class of biased sampling models,
we establish the large sample theory.

3. Preliminaries: asymptotic theory for the MLE. GVW character-
ized minimal assumptions on the known selection weight functions and the
data under which Vardi’s NPMLE �n is uniformly

√
n-consistent, asymptoti-

cally normal and efficient, where the uniformity is over a Donsker class. Es-
sentially, the hypotheses needed for these results are connectedness of the
graph G', ni →∞ with λni → λi > 0, i = 1� � � � � s, the normalizing constants
Wi�G� are finite and at least one weight function is bounded away from zero.
Under these conditions (assuming that G'�θ� is connected for all θ in some
neighborhood 	o ⊂ 	 of θ0), we give sufficient additional integrability and
smoothness hypotheses on the weight functions in order that the joint MLE
�θ̂n��n� retains these asymptotic properties. The basic extra conditions are
twice-differentiability of each weight function wi�·� θ� in θ at θ0 and square-
integrability of each “score for wi” ∂/∂θ log
wi�·� θ� in a neighborhood of θ0.
Consistency is derived by following GVW’s approach and utilizing special

features of the maximum profile partial likelihood estimation procedure. At
first thought, since the dimension of the parameter space of the semiparamet-
ric estimate based on (1.10) grows with the sample size, one might expect that
the estimate of θ suffers from inconsistency due to infinitely many incidental
parameters; see, for example, Kiefer and Wolfowitz (1956). However, the equiv-
alence of maximizing the full likelihood over an infinite-dimensional param-
eter space with maximizing the partial likelihood over a finite-dimensional
parameter space (Theorem 1.2) implies that this is not the case. Asymp-
totic normality of �θ̂n��n� is proved as follows. First, asymptotic normality
of θ̂n is established through application of a Master theorem [see, e.g., Bickel,
Klaassen, Ritov and Wellner (1993), Theorem 1, page 312] to the finite col-
lection of estimating equations formed by setting derivatives of the log profile
partial likelihood (1.13.) to zero. The key stochastic, approximation hypothesis
of the Master theorem is verified using tools in empirical process theory. Sec-
ond, follow Gill, Vardi and Wellner’s (1988) (henceforth GVW) proof of asymp-
totic normality of �n, adding the necessary hypotheses for it to go through
for �n evaluated at θ̂n. Efficiency is established by comparison of the limiting
covariance structure of the MLE to the information bounds. The needed semi-
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parametric efficiency theory is largely taken from Bickel, Klaassen, Ritov and
Wellner (1993), henceforth referred to as BKRW.
An alternative method for establishing asymptotic normality and efficiency

of infinite-dimensional maximum likelihood estimators, developed by Van der
Vaart (1995), does not require calculation of the information bounds. However,
the hypotheses of Van der Vaart’s powerful approach are difficult to verify
for this problem. We have successfully applied Van der Vaart’s method for
the case Y = R, but have not yet succeeded for a general space Y [Gilbert
(1996)]. The difficulty is in identifying a set of functions on which the score
operator acts and a metric space for this set for which Van der Vaart’s Fréchet
differentiability and continuous invertibility hypotheses can both be verified.
To obtain maximum generality with minimal assumptions, we directly extend
the approach of GVW, exploiting the elegant structure in the maximum profile
partial likelihood estimation procedure.

3.1. Notation. We give some notation, which corresponds to that used by
GVW. Let �θ0�V0�G� denote the “true” parameter value, and let Fiθ�A� ≡
Fi�A�θ�G�, A ∈ B. Define

w̃i�y� θ� ≡ wi�y� θ�/Wi�θ�G� and r�y� θ� ≡
[
s∑
i=1
λiw̃i�y� θ�

]−1
�

Let r = �r1� � � � � rs�T, with ri�y� θ� ≡ λiw̃i�y� θ�/
∑s
k=1 λkw̃k�y� θ� = λiw̃i�y� θ�

r�y� θ�. Notice that∑si=1 ri�y� θ� = 1 for all y and θ. Putφ�y� θ� =∑si=1 ri�y� θ�
�ẇi�y� θ�/wi�y� θ��, and let w ≡ �w1� � � � �ws�T, w̃ ≡ �w̃1� � � � � w̃s�T, W0 ≡
�W1�θ0�G�� � � � �Ws�θ0�G��T, �n ≡ ��n1� � � � ��ns�T, V�θ� = �V1�θ�� � � � �
Vs�θ��T and λ be the diagonal matrix with diagonal �λ1� � � � � λs�T. For θ ∈ 	,
define an s× s matrixM�θ� by

M�θ�=λ−1 −
∫
r�y� θ�w̃�y� θ�w̃T�y� θ�dG�y�

=λ−1 −G(r�θ�w̃�θ�w̃T�θ�)�(3.1)

As in GVW (page 1083), the matrix M�θ� is singular and has rank s− 1. Let
M−�θ� be a 
1�2-generalized inverse ofM�θ�. The needed facts aboutM−�θ�
are given in Lemmas 5.1 and 5.2 of GVW, which hold for each fixed θ ∈ 	. Let
rn, rni, φn, λn and Mn�θ� equal r, ri, φ, λ and M�θ�, respectively, with the
λi’s replaced with λni’s and the Wi’s replaced with �ni’s.
Let Fθ�y� ≡

∑s
i=1 λiFiθ�y� be the average of the biased sampling distribu-

tions (1.3), and Fnθ�y� =
∑s
i=1 λniFiθ�y�. Notice from (1.3) that Fθ and G are

related by

dFθ�y� = r−1�y� θ�dG�y� and dG�y� = r�y� θ�dFθ�y��(3.2)
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With the observations viewed as i.i.d. random variables Xk = �Ik�Yk�, k =
1� � � � � n, Fθ�h�Y�� is the expectation of h under the law of X1. For a function
h depending on x = �i� y�, define

P�θ�G�
[
h�X�] = E�θ�G�[h�I�Y�]

=
s∑
i=1
λiFiθ

(
h�i�Y�) = s∑

i=1
λiG

(
h�i�Y�w̃i�Y�θ�

)
�

(Evidently, P�θ�G��h�Y�� = Fθ�h�Y��.) Similarly define the biased sampling
empirical measure by �n�h�X�� =

∑s
i=1 λni�ni�h�i�Y��. Let P0 = P�θ0�G� be

the “true” semiparametric biased sampling distribution. Let � · �1 denote the
L1 norm �x�1 =

∑d
i=1 �xi� for x ∈ Rd.

4. Information bounds. We compute expressions for the limiting covari-
ance process of an efficient estimator of �θ0�G� in the semiparametric biased
sampling model. The notion according to which it is efficient is that of a best
regular estimator sequence; see, for example, BKRW [page 21]. An estimator
sequence is considered to be asymptotically efficient relative to the tangent
set Ṗ00 if, among the class of regular estimators, its limiting variance has the
least dispersion. The limiting process with “least dispersion” is defined by the
information bounds I−1�θ0� for θ0 and I−1G for G.
Let l̇θ be the score for θ, the derivative of the log biased sampling density

p of (1.1) with respect to θ, given by

l̇θ�x�=
ẇi�y� θ�
wi�y� θ�

−E
[
ẇi�Y�θ�
wi�Y�θ�

�I = i
]

= ẇi�y� θ�
wi�y� θ�

−G
(
ẇi�Y�θ�
wi�Y�θ�

w̃i�Y�θ�
)
�

(4.1)

where ẇi�y� θ� ≡ �∂/∂θ′�wi�y� θ′��θ′=θ. We refer to ẇi�·� θ�/wi�·� θ� = �∂/∂θ′�
log
wi�·� θ′��θ′=θ as the score for wi, and denote the kth component of ẇi,
k = 1� � � � � d, by ẇik�y� θ� ≡ �∂/∂θ′k�wi�y� θ′��θ′=θ. For a tangent h ≡ �∂/∂η� log
gη�η=0 ∈ L02�G�, where L02�G� is the space of functions with

∫
h2 dG <∞ and∫

hdG = 0, the score (operator) for g equals

l̇gh�x�=
∂

∂η
log dP�θ�Gη��η=0

=h�y� −E�h�Y��I = i�
=h�y� −G(h�Y�w̃i�Y�θ�)�

(4.2)

Define a weighted average score for θ over the s samples by φ'�y� θ� =∑s
i=1 ri�y� θ�l̇θ�i� y�.
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4.1. Information bound for θ0.

Theorem 4.1 (Information bound for θ0). Suppose each weight function
wi�y� θ� is differentiable in θ at θ0. Further suppose:

(I) For some i ∈ 
1� � � � � s, there does not exist a vector b ∈ Rd, b �= 0, such
that

bT
(
ẇi�y� θ0�
wi�y� θ0�

−
[
φ'�y� θ0� −G

(
φ'�θ0�

)]

−G(φ'�θ0�w̃T�θ0�)(M−�θ0�
)T[
w̃�y� θ0�r�y� θ0� −G

(
w̃�θ0�r�θ0�

)])

≡ bT
(
ẇi�y� θ0�
wi�y� θ0�

− a'�y� θ0�
)

(4.3)

is a.s. constant with respect to the law Fi0. Then:

A. The unique efficient score function l̇'θ0 for θ0 is

l̇'θ0�x� =
ẇi�y� θ0�
wi�y� θ0�

− a'�y� θ0� −E
[ẇi�Y�θ0�
wi�Y�θ0�

− a'�Y�θ0��I = i
]
�

where

a'�y� θ0� ≡ φ'�y� θ0� −G
(
φ'�θ0�

)
+G(φ'�θ0�w̃T�θ0�)(M−�θ0�

)T
×
[
w̃�y� θ0�r�y� θ0� −G

(
w̃�θ0�r�θ0�

)]
�

B. The efficient information matrix I�θ0� for θ0 is nonsingular, and is given
by

P0

[
l̇'θ0�I�Y�l̇'Tθ0 �I�Y�

]
=P0

{
ẇI�Y�θ0�
wI�Y�θ0�

ẇTI �Y�θ0�
wI�Y�θ0�

−φ�Y�θ0�φ�Y�θ0�T
}

−A�θ0�M−�θ0�A�θ0�T�

(4.4)

whereM−�θ0� is a 
1�2-generalized inverse ofM�θ0� and

A�θ0�=G
{(
ẇ1�Y�θ0�
w1�Y�θ0�

−φ�Y�θ0�
)
w̃1�Y�θ0��

· · · �
(
ẇs�Y�θ0�
ws�Y�θ0�

−φ�Y�θ0�
)
w̃s�Y�θ0�

}
�

(4.5)
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Expression (4.3) and the efficient score and information are independent of
the choice of 
1�2-generalized inverseM−�θ0�.

When s = 2, the inverse efficient information (covariance) matrix I−1�θ0�
equals

1
λ1λ2

[
G

(
ẇ1�θ0�
w1�θ0�

ẇT1 �θ0�
w1�θ0�

w̃1�θ0�r�θ0�
)

−
G
(
ẇ1�θ0�
w1�θ0�w̃1�θ0�r�θ0�

)
G
(
ẇT1 �θ0�
w1�θ0� w̃1�θ0�r�θ0�

)
G
(
w̃1�θ0�r�θ0�

)
]−1
�

(4.6)

Remark 4.1. The reason l̇'θ0 and I�θ0� do not depend on the choice of 
1�2-
generalized inverse M−�θ0� is because each row of G�φ'�θ0�w̃T�θ0��, and the
vector �r�y� θ0�w̃�y� θ0�−G�r�θ0�w̃�θ0��� is in the range ofM, equal to Range
�M� = 
x� λTx = 0. See Lemma 5.2 (iv) of GVW. In applications, a convenient
choice ofM−�θ0� is

M−�θ0� =

M−1

11 �θ0� 0

0 0


 �(4.7)

where M11�θ0� is the upper-left s − 1 × s − 1 submatrix of M�θ0�. GVW
[page 1080] proved thatM11�θ0� is nonsingular under connectivity of G'�θ0�.

Remark 4.2. Note that by the Cauchy–Schwarz inequality, the informa-
tion for θ0 when s = 2 and d = 1 is positive if and only if ẇ1�·� θ0�/w1�·� θ0�
is nondegenerate, which is true if and only if hypothesis (I) of Theorem 4.1
holds. This sheds light on the necessity of hypothesis (I).

Remark 4.3. The information for estimation of the regression parameter
θ0 in the Cox proportional hazards model takes a similar form. Let Z denote
a covariate and T a failure time, with no censoring. Under the proportional
hazards model λ�t�z� = λ�t�0� exp
θT0 z, the information for θ0 is I�θ0� =
EVar�Z�T�. This is derived in BKRW (pages 80–82) by computation of the
efficient score via orthogonality calculations. This same approach is used in
the proof of Theorem 4.1, and I�θ0� of (4.4) has the same structure as I�θ0� in
the Cox model, equal to P0 Var��ẇI�Y�θ0�/wI�Y�θ0�� − a'�Y�θ0��I�.

4.2. Information bound for G. Since G is an infinite-dimensional param-
eter, the information bound is an inverse information covariance functional
I−1�P0�G�P� ≡ I−1G � H × H → R. It is defined, as in BKRW [page 184], by
I−1G �h1� h2� ≡ E�l̃G�πh1�l̃G�πh2��, where l̃G�πh� is the efficient influence func-
tion for estimation of G�h�. Here πh is the projection map from l∞�H� to R,
defined by πh�G� = G�h� =

∫
hdG, where we now view probability distri-

butions G as elements of l∞�H�, the Banach space of all bounded functions
z� H → R, which is equipped with the supremum norm.
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Theorem 4.2 (Information bound for G). Suppose the conditions of Theo-
rem 4.1 hold. Additionally suppose r�y� θ0� and r−1�y� θ0� are bounded in y.
Then the inverse information covariance functional I−1G for estimation of G is

I−1G �h1� h2�=G
([
h1 −G�h1�

][
h2 −G�h2�

]
r�θ0�

)
+G([h1 −G�h1�]r�θ0�w̃T�θ0�)M−�θ0�
×G([h2 −G�h2�]r�θ0�w̃�θ0�)

+G(h1aT' �θ0�) ∗ I−1�θ0� ∗G(h2a'�θ0�)
=I−1G0�h1� h2�
+G(h1aT' �θ0�) ∗ I−1�θ0� ∗G(h2a'�θ0�)

(4.8)

For h1� h2 ∈ H. The first three lines of (4.8) equal I−1G0 , the inverse in-
formation covariance functional for estimation of G when θ0 is known. This
functional was derived by GVW [pages 1089–1091] through computation of
the inverse information operator for g, �l̇Tg l̇g�−1. The fourth line of (4.8) is the
inflation of the covariance functional when θ0 is unknown.
SinceG��h−G�h��r�θ0�w̃�θ0�� and the rows ofG�φ�θ0�w̃T�θ0�� are in Range

�M�, the information bound for G is independent of the choice of generalized
inverseM−�θ0�.

Remark 4.4. If θ0 is known and there is no biasing in the sampling, r
and all the weights are unity, so that I−1G reduces to I−1G �h1� h2� = G�h1h2� −
G�h1�G�h2�. This is the information bound for estimation of a probability
measure G from an independent, identically distributed sample from G. It is
well known that the empirical measure is regular and has limiting covariance
given by G�h1h2� −G�h1�G�h2�, so that it is efficient. Therefore, the inverse
information covariance functional I−1G matches this known special case, as it
must.

Remark 4.5. The assumption that r−1�y� θ0� is bounded in y, which is
equivalent to each of the weight functions wi�y� θ0�, i = 1� � � � � s, being
bounded in y, is only used for calculation of the information bound for G.
This technically unpleasant assumption is needed to ensure existence of the
inverse information operator �l̇Tg l̇g�−1.

We write down I−1G for two-sample semiparametric biased sampling mod-
els. We calculateM−�θ0� of (4.7) to equal the 2×2 matrix with λ1�λ2G�w̃1�θ0�
r�θ0���−1 as the upper-left element and zeros elsewhere. Then direct calcula-
tion gives

a'�y� θ� = r1�y� θ�
[
ẇ1�y� θ�
w1�y� θ�

−G
(
ẇ1�θ�
w1�θ�

w̃1�θ�r�θ�
)/
G

(
w̃1�θ�r�θ�

)]
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and, with all functions evaluated at θ0,

I−1G �h1� h2�=G
([
h1 −G�h1�

][
h2 −G�h2�

]
r
)

+G([h1 −G�h1�]rw̃1) λ1
λ2G�rw̃1�

G
([
h2 −G�h2�

]
rw̃1

)

+
{
λ1

[
G

(
h1
ẇ1
w1
w̃1r

)
G�w̃1r� −G

(
ẇ1
w1
w̃1r

)
G�h1w̃1r�

]

×
[
G

(
h2
ẇT1
w1
w̃1r

)
G�w̃1r� −G

(
ẇT1
w1
w̃1r

)
G�h2w̃1r�

]}

×
{
λ2G�w̃1r�

[
G

(
ẇ1
w1

ẇT1
w1
w̃1r

)
G�w̃1r�

−G
(
ẇ1
w1
w̃1r

)
G

(
ẇT1
w1
w̃1r

)]}−1
�

(4.9)

The consistent plug-in estimate of Cov��n�h1���n�h2�� is given by the empir-
ical version of (4.9).
To work out the asymptotic covariance between

√
n�θ̂n − θ0� and

√
n�Ĝn

�h� − G�h�� for an efficient estimator �θ̂n� Ĝn�, suppose θ̂n and Ĝn are each
asymptotically linear, with efficient influence functions l̃θ0 = I−1�θ0�l̇'θ0 and
l̃G, respectively. Set Zθ0 ≡ limn

√
n�θ̂n − θ0� and Z�h� = limn

√
n�Ĝn�h� −

G�h��. As in BKRW (panel 5.5.27, page 216), since l̃G�πh� = l̇g�l̇Tg l̇g�−1�πh� −
l'Tθ0 I

−1�θ0�G��h−G�h��a'�θ0��, where l'θ0 is orthogonal to Range �l̇g�,

Cov�Zθ0�Z�h�� = P0
(
l̃θ0�X�l̃G�πh��X�

)
= P0

([
I−1�θ0�l'θ0

][
−l'Tθ0 I−1�θ0�G

([
h−G�h�]a'�θ0�)]

)

= −I−1�θ0�G
([
h−G�h�]a'�θ0�)

= −I−1�θ0�G
(
ha'�θ0�

)
�

(4.10)

5. Asymptotic behavior of (�̂n��n).

5.1. Consistency. Consistency of �θ̂n��n� is established in two steps. First,
consistency of θ̂n is proved under the hypotheses that the log limiting profile
partial likelihood l1pro�θ� and the log profile partial likelihood ln1pro�θ�x� ≡
logLn1pro�θ�x� for all n large enough are strictly concave on 	. Since �n ≡
�n�θ̂n� is Vardi’s NPMLE evaluated at θ̂n, consistency of �n essentially follows
by consistency of θ̂n and GVWs proof that Vardi’s NPMLE is consistent.
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From (1.13), the log profile partial likelihood ln1pro is given by

1
n
ln1pro�θ�x�=

s∑
i=1
λni
1
ni

ni∑
j=1
log
{

wij �θ��−1ni �θ�∑s
k=1 λnkwkj �θ��−1nk�θ�

}

=�n log
{
λ−1nIrnI�Y�θ�

}
�

(5.1)

Theorem 5.1 (Consistency of θ̂n). Suppose that:

(i) The parameter space 	 ⊂ Rd is an open convex set.
(ii) Each weight function wi is continuously differentiable in θ in a neigh-

borhood of θ0.
(iii) For all n larger than some fixed N, ln1pro�θ�x� is strictly concave on 	.

Then as each ni→∞ with λni→ λi > 0,

1
n
ln1pro�θ�x� →a�s� l1pro�θ�

=
s∑
i=1
λiFiθ log

{
wi�Y�θ�V−1�θ�∑s

k=1 λk wk �Y�θ�V−1k �θ�

}

= P�θ�G� log
{
λ−1I rI �Y�θ�

}
(5.2)

for each fixed θ ∈ 	. By strict concavity of ln1pro�θ�x� on 	 for all n > N and
strict concavity of l1pro�θ� on 	, which is implied by (iii) and (5.2), it follows

that ln1pro�θ�x� has a unique maximum at θ̂n for every n > N and l1pro has a

unique maximum at θ0, so that θ̂n→a�s� θ0 as n→∞.

Remark 5.1. Through theoretical results and simulations, Gilbert (1996)
and Gilbert, Lele and Vardi (1999) (see especially Figure 2 and Theorems 5
and 6) showed that ln1pro�θ�x� and l1pro�θ� are strictly concave on	 ⊂ Rd for a
large class of weight functions and data sets. A sufficient general condition for
the concavity hypothesis (iii) to hold is that condition (I) of Theorem 4.1 holds
for the function of (4.3) evaluated at every θ ∈ 	. In the proof of Theorem 5.3,
we show that the second derivative matrix of l1pro�θ� equals −I�θ�, so that
positive definiteness of I�θ� for all θ ∈ 	 implied by (I) for all θ ∈ 	 yields strict
concavity of l1pro�θ� on 	. Now, the second derivative matrix of ln1pro�θ�x� is
asymptotically equivalent to minus the observed information matrix −In�θ�
by regularity, and In�θ� converges in probability to I�θ� under the hypotheses
of Proposition 5.1. Thus, under these hypotheses and condition (I) for all θ ∈
	, hypothesis (iii) holds. Condition (I) for all θ in 	 will usually hold if the
following easy-to-verify condition holds: for some i ∈ 
1� � � � � s and all l ∈

1� � � � � d and every θ ∈ 	, ẇil�y� θ�/wi�y� θ� andwi�y� θ� are not a.s. constant
with respect to the law Fiθ.
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The first task in establishing consistency of �n is establishing consistency
of �n�θ̂n�, which is defined as the solution of (1.12) evaluated at θ̂n, or equiv-
alently as the maximizer jointly with θ̂n of the partial likelihood (1.11).

Proposition 5.1 [Consistency of �n�θ̂n� and �n�θ̂n�]. Suppose conditions

(i)–(ii) of Theorem 5.1 hold, and its conclusion θ̂n→a�s� θ0. In addition, suppose
there exists a δ > 0 such that

(iv) sup�θ−θ0�1<δ G
(�ẇik�θ�/wi�θ��w̃i�θ�) < ∞ for all i = 1� � � � � s, k = 1�

� � � � d.

Then the equations (1.12) have, with probability 1 as n→∞with λni→ λi > 0,
the unique solution �n�θ̂n� = ��n1�θ̂n�� � � � ��ns−1�θ̂n��1�T that satisfies

�n�θ̂n� →a�s� V�θ0� ≡ V0�

Moreover, �n�θ̂n� →a�s� W�θ0�.

As in GVW [page 1081], let he be a fixed nonnegative G-integrable function,
let C be a Vapnik–Chervonenkis class of subsets of the probability space Y,
and consider the collection of functions

H ≡ 
he1C� C ∈ C�(5.3)

We give conditions under which �n is a consistent estimator of G uniformly
over H.

Theorem 5.2 (Consistency of �n). Suppose the conditions of Proposition
5.1 hold, and that H is defined as in (5.3), with he ∈ L1�G�. Then as n→ ∞
with λni→ λi > 0,

��n −G�H ≡ sup
h∈H

{��n�h� −G�h��}→a�s� 0�(5.4)

Theorem 5.2 has two immediate corollaries.

Corollary 5.1. Assume that Y = Rk and C is a Vapnik–Chervonenkis
class of subsets of Y, and the conditions of Proposition 5.1 hold. Then as n→∞
with λni→ λi > 0,

��n −G�C ≡ sup
C∈C

��n�C� −G�C�� →a�s� 0�(5.5)

Corollary 5.2. Suppose G��h�� <∞, and the conditions of Proposition 5.1
hold. Then �n�h� →a�s� G�h� as n→∞ with λni→ λi > 0.
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5.2. Asymptotic distributions. We formulate the asymptotic distribution
theory for

√
n��n−G� in terms of the s-sample Y-marginal empirical process

�n, defined by

�n ≡
√
n��n −Fn0� =

s∑
i=1

√
λni
√
ni��ni −Fi0��

where �n and �ni are as in (1.14). If F is a Donsker class for each Fi0, i =
1� � � � � s, then 
�n�f�� f ∈ F converges in distribution in l∞�F� to the mean
zero Gaussian process 
��f�� f ∈ F with covariance

Cov
(
��h1����h2�

) = s∑
i=1
λi
{
Fi0�h1h2� −Fi0�h1�Fi0�h2�

}
= G�r−1�θ0�h1h2� −G

(
h1w̃

T�θ0�
)
λG
(
h2w̃�θ0�

)
�

To avoid problems with measurability, convergence in distribution is defined
using outer expectations as in Dudley (1985).
For fixed θ ∈ 	, define the biased sampling empirical process by �n�·� θ� ≡√
n��n�θ� − G�, regarded as a process indexed by a collection of functions

H ⊂ L2�G�. Thus, for h ∈ H,

�n�h� θ� =
∫
hd�n�θ� =

√
n
∫
hd��n�θ� −G��

We formulate a limit theorem for �n�·� θ̂n� jointly with the
√
n�θ̂n−θ0� process.

This joint process, indexed by 	×H, is defined by

�′n�h� θ̂n� =
(√
n�θ̂n − θ0���n�h� θ̂n�

)T
�

The appropriate limiting Gaussian distribution is given by

Z′�h� =
(
Zθ0 � −G

(
haT' �θ0�

) ∗Zθ0 +Z�h�)T�(5.6)

where Zθ0 ≡ limn
√
n�θ̂n− θ0� and Z is a mean zero Gaussian process defined

in (2.18) of GVW, with covariance function equal to I−1G0 � displayed as the first
three lines of expression (4.8). The process Z′ has covariance function

Cov
(
Z′�h1��Z′�h2�

)
=
[

I−1�θ0� −I−1�θ0� ∗G
(
h2a'�θ0�

)
−G(h1aT' �θ0�) ∗ I−1�θ0� I−1G �h1� h2�

](5.7)

for h1� h2 ∈ H, where a' and I−1�θ0� are as in Theorem 4.1 and I−1G is as in
Theorem 4.2.
As in GVW, take H to be a collection of functions with G-integrable enve-

lope function he such that G�h2er�θ0�� < ∞ and the class of functions F =
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hr�θ0�� h ∈ H is Donsker for each Fi0. We also require that the weight
functions (in a neighborhood of θ0) be included in H, that is, for some δ > 0,

Wδ ≡
⋃

�θ−θ0�1<δ

{
wi�θ�r�θ�� � � � �ws�θ�r�θ�

}
(5.8)

is Donsker for each Fi0. Additionally, assume that the finite collection of score
functions

Ẇ ≡
{
ẇ1k�y� θ0�
w1�y� θ0�

� � � � �
ẇsk�y� θ0�
ws�y� θ0�

� k = 1� � � � � d
}

(5.9)

is Donsker for each Fi0.
Before stating our limit theorem for �′n, we establish asymptotic normality

(and efficiency) of θ̂n. We apply the Master theorem, originating from Hu-
ber (1967), which applies to estimators which approximately zero out a col-
lection of score or estimating equations. In our case, the estimating equa-
tions arise from setting the derivative of the log profile partial likelihood
(5.1) equal to zero. Recall that n−1ln1pro�θ�x� = �n

[
log
λ−1nIrnI�Y�θ��n�θ��

]
.

Let ψθ�x� ≡ ψ�x� θ�V�θ�� equal �∂/∂θ′� log
λ−1i ri�y� θ′�V�θ′���θ. By the chain
rule, we calculate

ψθ�x�=
∂

∂θ′
log
{
λ−1t ri�y� θ′�V�

}∣∣∣∣
�θ�V�θ��

+ ∂
∂θ′
VT�θ′�

∣∣∣∣
θ

∂

∂V
log
{
λ−1i ri�y� θ�V�

}∣∣∣∣
�θ�V�θ��

=
[
ẇi�y� θ�
wi�y� θ�

−φ�y� θ�
]
+ ∂
∂θ′
VT�θ′�

∣∣∣∣
θ

∗V−1�θ�[−ei + r�y� θ�]�
(5.10)

where ei is the s-column vector with a 1 at position i and zeros elsewhere.
The matrix �∂/∂θ′�VT�θ′��θ can be calculated by differentiating both sides of

the profile likelihood equations defining V�θ�, P�wi�θ�V−1i �θ�/
∑s
k=1 λkwk�θ�

V−1k �θ�� = 1, i = 1� � � � � s−1. Setting di�θ� = �∂/∂θ′�Vi�θ′��θ/Vi�θ�, i = 1� � � � � s
(with ds�θ� = 0), this gives

di�θ� = G
[(
ẇi�θ�
wi�θ�

−φ�θ�
)
w̃i�θ�

]

+
s∑
k=1
λkdk�θ�G

(
r�θ�w̃i�θ�w̃k�θ�

)
� i = 1� � � � � s�

In matrix notation this is written, with d�θ� = �d1�θ�� � � � � ds�θ��, as

d�θ� = A�θ� + d�θ�λG(r�θ�w̃�θ�w̃T�θ�)�
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By definition of the matrix M, we find that the solution d�θ� is given by
A�θ�M−�θ�λ−1. Substituting this into (5.10) gives

ψθ�x� =
ẇi�y� θ�
wi�y� θ�

−φ�y� θ� +A�θ�M−�θ�λ−1�−ei + r�y� θ���(5.11)

Note that, if the profile partial likelihood estimator θ̂n is efficient, the function
ψθ will equal the efficient score function l̇

'
θ defined in Theorem 4.1.

Letting ψnθ�x� = ψn�x� θ��n�θ�� be the empirical version of ψθ�x�, with the
λi, ri and Vi replaced with λni, rni and �ni, respectively, it follows that

?n�θ�x�≡
∂

∂θ′
1
n
ln1pro�θ′�x��θ

=�n

[
∂

∂θ′
[
λ−1nIrnI

(
Y�θ′��n�θ′�

)]∣∣∣
θ

]

=�n
[
ψn
(
X�θ��n�θ�

)]
=�n

[
ψθ�X�

]+ op�n−1/2��

(5.12)

where the last equality will be verified in the proof of Theorem 5.3.
By the law of large numbers, �nψθ�X� →p P�θ�G�ψθ�X�. Let ?̇0 = P0∇θψθ

�X��θ0 , the derivative matrix of P0ψθ�X� evaluated at θ0.

Theorem 5.3 (Asymptotic normality of θ̂n). Suppose there exists a δ > 0
such that Wδ and Ẇ of (5.8) and (5.9) are Donsker for each Fi0. Further
assume hypothesis (I) of Theorem 4.1 and the hypotheses of Proposition 5.1.
Additionally suppose:

(v) Each weight function is twice-differentiable in θ at θ0.
(vi) There exists a δ > 0 such that sup�θ−θ0�1<δ r�y� θ� is bounded in y.

(vii) There exists a δ > 0 such that sup�θ−θ0�1<δ G
(�ẇik�θ�/wi�θ��2w̃i�θ0�) <

∞ for i = 1� � � � � s, k = 1� � � � � d.
(viii) For i = 1� � � � � s − 1, k = 1� � � � � d, there exists a constant K, a δ > 0

and an α > d/2 such that

sup
y∈Y

[∣∣∣∣ẇik�y� θ1�wi�y� θ1�
− ẇik�y� θ2�
wi�y� θ2�

∣∣∣∣
]
≤K�θ1 − θ2�α1

for all θ1� θ2 ∈ 	δ ≡ 
θ ∈ 	� �θ− θ0�1 < δ.
Then ?̇0 is nonsingular and θ̂n, the unique maximizer of the profile likeli-

hood (1.13), satisfies

√
n
(
θ̂n − θ0

) = − 1√
n

n∑
i=1
?̇−10 ψ0�Xi� + oP�1�

→d Nd�0� A��
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where A = ?̇−10 P0�ψ0�X�ψT0 �X���?̇−10 �T. Here ?̇0 = −P0�ψ0�X�ψT0 �X��, so that
A = −?̇−10 . Furthermore, −?̇0 = I�θ0�, the efficient information matrix I�θ0�
defined in (4.4), so that

√
n
(
θ̂n − θ0

)→d Zθ0 ∼Nd(0� I−1�θ0�)�
Remark 5.2. To establish asymptotic normality of θ̂n, the present tech-

niques of proof rely upon square Fi0-integrability of each score ẇi�θ�/wi�θ�
uniformly in θ in a neighborhood of θ0. This condition is equivalent to
sup�θ−θ0�1<δ P0�l̇Tθ �X�l̇θ�X�� <∞, where l̇θ is the score for θ defined in (4.1).

Remark 5.3. Hypothesis (I) is used to establish invertibility of ?̇0. Empir-
ical process theory is used to verify the stochastic, approximation condition
of the Master theorem. It is implied if a certain class of functions is Donsker
[see Van der Vaart (1995), Lemma 1], and is why the classes Wδ and Ẇ are
assumed to be Donsker. The uniform Lipschitz condition (viii) is used in veri-
fying that classes of differences of scores for weights in a neighborhood of θ0
are Donsker.

Given asymptotic normality of θ̂n, asymptotic normality of the joint process
�′n can be established.

Theorem 5.4 (Asymptotic normality of �θ̂n��n��. Let H be a collection of
functions with envelope he such that F = 
hr�θ0�� h ∈ H is Donsker for

each Fi0, G�h2er�θ0�� = F0�h2er2�θ0�� < ∞ and there exists δ > 0 such that
sup�θ−θ0�1<δ G�he�ẇik�θ�/wi�θ��2w̃i�θ0�� < ∞ for each i = 1� � � � � s, k = 1� � � � �
d. Further assume the hypotheses of Theorem 5.3.

Then �θ̂n��n�, the solution of procedure (1)–(3), satisfies

�′n�·� θ̂n� =
(√
n
(
θ̂n − θ0

)
��n

(·� θ̂n))T

= 1√
n

n∑
i=1

(
l̃θ0�Xi�� l̃G�Xi�

)T + oP'�1�
⇒ Z′ in 	× l∞�H��

where Z′ is a tight mean zero Gaussian process in 	× l∞�H� with covariance
process given by (5.7).

Conditions for a class F to be Donsker are well characterized; for example,
see Pollard (1984) and Van der Vaart and Wellner (1996). A special case is
given in the following corollary, with important application Y = Rk, he = 1,
and H the collection of all indicator functions of lower-left orthants, or of all
rectangles, or of all balls.

Corollary 5.3. Suppose H = 
he1C� C ∈ C, where C is a Vapnik–
Chervonenkis class of sets. If G�h2er�θ0�� < ∞ and there exists δ > 0 such
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that sup�θ−θ0�1<δ G�he�ẇik�θ�/wi�θ��2w̃i�θ0�� < ∞, i = 1� � � � � s, k = 1� � � � � d,
then the result of Theorem 5.4 follows from the hypotheses of Theorem 5.3.

Notice that H of the corollary equals H of (5.3), the space over which the
semiparametric MLE �n was proved to be uniformly consistent. For the dis-
tributional result, square G-integrability of the envelope he is required, while
only G-integrability is needed for consistency.
Since the limiting covariance process coincides with the information bounds

for θ and G, with AsymCov�Zθ0�Z�h�� equal to covariance expression (4.10),
the MLE �θ̂n��n� is asymptotically efficient relative to a tangent set Ṗ00. It
is efficient in the following sense: for a given, fixed biased sampling prob-
lem as in (1.1)–(1.3) (the number of samples s ≥ 2, the parametric form for
the weight functions w1� � � � �ws and the sampling fractions λ1� � � � � λs are all
known), among the class of regular estimators, its limiting process has the
least dispersion. See Remark 3.1 and Problem 6.1 in GVW for a discussion of
designing the biased sampling in order to optimize some criteria.

Remark 5.4. Note that G�wi�θ�r�θ�� < ∞ is automatically satisfied if
Wi�θ�G� < ∞ and λi > 0, since G�wi�θ�r�θ�� = �Wi�θ�G�/λi�G�ri�θ�� ≤
Wi�θ�G�/λi. This, coupled with the hypothesis G�h2er�θ0�� <∞, implies that
the union Fδ ≡ F ∪Wδ is Donsker because F and Wδ are; see, for example,
Van der Vaart and Wellner [(1996), Example 2.10.7]. This fact is used in the
proof of Theorem 5.4.

Remark 5.5 (Estimation of variability). The form of the covariance pro-
cess (5.7) suggests a plug-in procedure for estimating it. Simply construct
the sample analogue of (5.7), with θ0, G and λi replaced by θ̂n, �n and λni
throughout. This estimator converges in probability and almost surely to (5.7)
under natural conditions. This covariance estimator can also be obtained from
the full likelihood (1.10) as follows. Form the Hessian of ln = logLn by taking
second derivatives with respect to the mass points of G (the pj) and θ. Invert
the Hessian, which is an (h+d)× (h+d) matrix. For c ∈ Rd and h ∈ H, form
the vector �c1� � � � � cd� h�u1�� � � � � h�uh��, where uj, j = 1� � � � � h, is the location
of the mass point pj. Pre- and post-multiply the inverted Hessian to form the
estimator of the asymptotic variance of cT

√
n�θ̂n − θ0� + �n�h� θ̂n�. The lat-

ter method has been implemented in a computer program, and consistency
corroborated in simulations [Gilbert, Lele and Vardi (1999)].

Remark 5.6 (Bootstrap covariance estimator). We conjecture that the
bootstrap covariance estimator is asymptotically first-order correct. We have
verified this [Gilbert (1996)] for the case Y = R by utilizing the fact that
bootstrapped Z-estimators are first-order asymptotically correct if they sat-
isfy a mild integrability condition and the hypotheses of Van der Vaart’s (1995)
Z-theorem [Wellner and Zhan (1998)]. Bootstrap confidence limits for �θ̂n��n�
are studied in simulations by Gilbert, Lele and Vardi (1999).
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Remark 5.7 (Hypothesis tests of H0� θ0 = 0). Gilbert, Lele and Vardi
(1999) developed and investigated finite-sample properties of Wald, efficient
score and likelihood ratio tests of the hypothesis H0� θ0 = 0. It is straight-
forward to verify that the statistics are asymptotically χ2d under H0 if the
hypotheses of Theorem 5.4 hold. In addition, the profile likelihood-based con-
fidence set for θ0 defined by 
θ ∈ 	�2�ln1pro�θ̂n�x� − ln1pro�θ�x�� ≤ χ2d�1−α has
correct converge probability 1− α in the limit.

Proposition 5.2 (Asymptotic normality of �n). Suppose the hypotheses of
Theorem 5.4 hold. Then

√
n��n −W0� →d �

(
r�θ0��w�θ0� −W0�

)
+G(r�θ0��w�θ0� −W0�w̃T�θ0�

)
M−�θ0��

(
r�θ0�w̃�θ0�

)
+W

0

[
G
(
w̃�θ0�aT' �θ0�

)
(5.13)

+G
(
ẇ1�θ0�
w1�θ0�

w̃1�θ0�� � � � �
ẇs�θ0�
ws�θ0�

w̃s�θ0�
)T]

∗Zθ0

∼ Ns�0� A��
where

A = G
(
r�θ0�

(
w�θ0� −W0

)(
w�θ0� −W0

)T)
+G(r�θ0��w�θ0� −W0�w̃T�θ0��M−�θ0�
×G(r�θ0�w̃�θ0��w�θ0� −W0�T

)
+W

0

[
G�w̃�θ0�aT' �θ0��(5.14)

+G
(
ẇ1�θ0�
w1�θ0�

w̃1�θ0�� � � � �
ẇs�θ0�
ws�θ0�

w̃s�θ0�
)T]

∗ I−1�θ0�

×
[
G
(
w̃�θ0�aT' �θ0�

)

+G
(
ẇ1�θ0�
w1�θ0�

w̃1�θ0�� � � � �
ẇs�θ0�
ws�θ0�

w̃s�θ0�
)T]T

W
0
�

Notice that when ws is a constant function (say ws = c), the sth row and
column of the covariance matrix A are filled with zeros. Thus, the above limit-
ing expression captures the degeneracy in the sth weight function. Note that
since �ni =�ni/�ns = c−1�ni , it follows automatically that

√
n��n−V0� →d

c−1Ns�0� A�, where A is as in (5.14).
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Finally, consider estimation of the biased distributions F10� � � � �Fs0. The
semiparametric MLE �̂ni of Fi0 is given by

�̂ni
(
h� θ̂n

) = �n
(
hwi

(
θ̂n
))/

�n
(
wi
(
θ̂n
))

for h ∈ H, i = 1� � � � � s. Set 	ni =
√
n��̂ni�·� θ̂n� − Fi0�, i = 1� � � � � s, and let

	n = �	n1� � � � �	ns�T, which is a vector of processes indexed by a collection of
functions H ⊂ L2�F0�. Define a vector of Gaussian processes Y� H → Rs by

Y�h�=�
(
hr�θ0�w̃�θ0�

)
−
[
G
(
hw̃�θ0�

)
λ−1 − (hr�θ0�w̃�θ0�w̃T�θ0�)]M−�θ0��

(
r�θ0�w̃�θ0�

)

+
[
−G(hw̃�θ0�aT' �θ0�)+G(h[l̇θ0�i�Y�� � � � � l̇θ0�s�Y�]T)

]
∗Zθ0

(5.15)

Proposition 5.3 (Asymptotic normality of 	n). Let δ > 0 and H be a col-
lection of functions such that F ≡ ⋃si=1
hr�θ0�wi�θ0�� h ∈ H is Donsker and
G�h2er�θ�� < ∞ for all �θ − θ0�1 < δ. Suppose the hypotheses of Theorem 5.4
hold. Then 	n ⇒ Y in l∞�H�s as n→∞ with λni→ λi > 0.

6. Examples and applications.

Example 6.1 (Examples 1.1 and 1.2 continued; generalized logistic regres-
sion model). For which GLR models is the MLE �θ̂n��n� consistent, asymp-
totically normal and efficient? For a large class of useful ones, as we now
assert. First consider the univariate s-sample model (1.5) with Y = R, H =

1�0� t�� t ∈ �0�∞�. Take hi�y� θ� =

∑d
k=1 hik�y�θk for known nonnegative func-

tions hik with hik�0� = 0, i = 1� � � � � s− 1, and set hs ≡ 0. In this case,
ẇik�y� θ�
wi�y� θ�

= hik�y�

and

wi�y� θ�r�y� θ� =
exp
{∑d
k=1 hik�y�θk

}
∑s
l=1 λl

[
exp
{∑d
k=1 hlk�y�θk

}
/Wl�θ�G�

] �
Choose the functions hik such that the classes


hik� i = 1� � � � � s− 1� k = 1� � � � � d and


wi�·� θ�r�·� θ�� �θ− θ0�1 < δ� i = 1� � � � � s
(6.1)

are Fl0-Donsker for some δ > 0, for each l = 1� � � � � s. A sufficient condition
for this to hold for the first class of (6.1) is that each hik is monotone; see,
for example, Van der Vaart and Wellner [(1996), Theorem 2.7.5], which is a
natural condition for the vaccine trial application. A sufficient condition for
the second class of (6.1) to be Donsker is that each wir, or equivalently each
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ri, is Lipschitz α > 1/2 in y, uniformly in �θ − θ0�1 < δ, and F0��Y�2+δ� <∞
for some δ > 0. Here we are using Van der Vaart’s (1994) theorem to verify
the hypothesis of Ossiander’s (1987) bracketing entropy central limit theorem
for classes of smooth functions.

Theorem 6.1 (Asymptotic properties of the univariate GLR model). Sup-
pose ni →∞ and λni → λi > 0, i = 1� � � � � s, there exists an i ∈ 
1� � � � � s − 1
such that the set of functions 
hi1� � � � � hid in (6.1) is linearly independent
and the limiting log profile partial likelihood is strictly concave on 	� Further
suppose there exists a δ > 0 such that, for each l = 1� � � � � s,
(A) G�h2ikw̃i�θ0�� < ∞ for each i = 1� � � � � s − 1, and the classes of (6.1) are

Fl0-Donsker for each l = 1� � � � � s.
Then the MLE �θ̂n��n� of �θ0�G� in the GLR model exists uniquely, can be
computed by the maximum partial likelihood estimation procedure and is con-
sistent uniformly over H ≡ 
1�0� t�� t ∈ �0�∞�, asymptotically Gaussian in

Rd × l∞�H� and efficient at P0 = P�θ0�G�.

The hypothesis λni → λi > 0, i = 1� � � � � s, states that the fraction of trial
participants infected during follow-up does not vanish in the limit for any
treatment group. For a two-arm vaccine trial, it simply says that the vaccine
is not 100% protective. As stated by Theorem 5 in Gilbert, Lele and Vardi
(1999), the hypothesis of a strictly concave limiting log profile partial likeli-
hood holds for all two-sample GLR models. Moreover, an easy extension of the
proof of this theorem shows strict concavity in the s-sample special case with
h1k = · · · = hs−1k, k = 1� � � � � d. Thus we have two corollaries.

Corollary 6.1 (Two-sample GLR model). Suppose s = 2, ni → ∞ with
λni → λi > 0, i = 1�2 and (A) holds. Then the conclusion of Theorem 6.1
holds.

Corollary 6.2 (Special case s-sample GLR model). Suppose s ≥ 2, ni →
∞ with λni → λi > 0, i = 1� � � � � s and h1k = · · · = hs−1k, k = 1� � � � � d. Then
under hypothesis (A), the conclusion of Theorem 6.1 holds.

Now consider the multivariate GLR model, in which Y = Rk and H is the
collection of indicators of lower-left orthants. Since there are many possibilities
for forms of weight functions, we do not state a theorem. Rather, we note
that, for a model of interest, the conditions of Theorems 1.1, 2.1, 5.2 and 5.4
can be checked systematically. Essentially, the multivariate situation offers
no added difficulties; identifiability and unique estimability in the limit follow
under the same conditions, and although the classes (6.1) will contain more
functions, they often have entropy bounds under the same hypotheses as for
the univariate case. In conclusion, the large sample properties of the MLE
established here hold for a broad collection of GLR models.
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For two-sample univariate GLR, we explicitly write the limiting variance-
covariance of �θ̂n��n�. From (4.6), the limiting variance I−1�θ0� of

√
n�θ̂n−θ0�

is {
λ1λ2∫

exp
{
h�θ0�

}
dG

[
G
(
ḣ2�θ0� ∗ exp

{
h�θ0�

} ∗ r�θ0�)

−
G
[(
ḣ�θ0� ∗ exp

{
h�θ0�

} ∗ r�θ0�)]2
G
(
exp
{
h�θ0�

} ∗ r�θ0�)
]}−1

�

(6.2)

with ḣ�θ0� = ∂
∂θ
h�·� θ��θ0 and r−1�y� θ0� = λ1

(
exp
h�y� θ0�/

∫
exp
h�θ0�dG

)+
λ2. The consistent plug-in estimate of variance is obtained by replacing λi and
�θ0�G� in (6.2) by λni and the MLE �θ̂n��n�. The limiting covariance process

AsymCov��n�s���n�t��� s� t ∈ �0�∞� and its estimate are obtained by se-
lecting h1 = 1�0� s�, h2 = 1�0� t�, and substituting w1, ẇ1 and r into (4.9).

Example 6.2 (Example 1.3 continued; choice-based sampling in economet-
rics). In the pure choice-based sampling design of Example 1.3, theM weight
functions in the biased sampling model are wj�y� θ� = pθ�j�y�, j = 1� � � � �M,
y ∈ Y. In this application, the sample space Y ⊂ Rd, and H is the set of
indicators of lower-left orthants times the indicators of Y. Since every weight
function depends on θ, Theorem 1.1 cannot be used to establish identifiability
of the model. However, Theorem 3 of Gilbert, Lele and Vardi (1999) gives a
sufficient condition for identifiability in this case. It yields, for instance, that
the semiparametric biased sampling model is identifiable when the paramet-
ric model pθ is a baseline category logit model [Cox and Snell (1989); Fienberg
(1980)] given by

pθ�j�y� =
exp
(
βTj y

)
∑M
j′=1 exp

(
βTj′y

) � j = 1� � � � �M�

or an adjacent categories linear logit model [Agresti (1984); Fienberg (1980)]
given by

pθ�j�y� =
exp
(
αj + jβTy

)
∑M
j′=1 exp

(
αj′ + j′βTy

) � j = 1� � � � �M�

When pθ is the full multinomial logistic regression model (1.7), the biased
sampling model can also be shown to be identifiable, arguing as in the proof
of Theorem 3 in Gilbert, Lele and Vardi (1999), utilizing the fact that the
aggregate shares are known. Moreover, the maximum partial likelihood esti-
mation procedure applies because the aggregate shares are known.
For this problem, ẇjk�y� θ�/wj�y� θ� = l̇θk�j�y�, the kth component of the

score for the parametric model pθ�j�y�. Suppose there exists a δ > 0 such that
sup�θ−θ0�1<δ G��l̇θk�j�Y��2pθ0�j�Y�� < ∞, which usually holds, for instance, if
the covariates are assumed bounded. This immediately implies condition (vii)
sup�θ−θ0�1<δ G��ẇkl�θ�/wk�θ��2w̃k�θ0�� < ∞ of Theorem 5.3, and consistency
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of the MLE �θ̂n��n� also follows if each l̇θk�j� ·� is continuous in θ at θ0 and
l1pro�θ� is strictly concave on 	. As described in Remark 5.1, l1pro�θ� is strictly
concave on 	 and (iii) holds if the information I�θ� for θ in the biased sam-
pling model is positive definite for all θ ∈ 	. For most parametric models pθ
defining the biasing functions, this is the case, which can be directly verified
by checking condition (I).
The uniform Lipschitz condition (viii) of Theorem 5.3 takes the form

∣∣∣l̇θ1k�j�y� − l̇θ2k�j�y�
∣∣∣ ≤K�θ1 − θ2�α1

for all θ1� θ2 ∈ 
θ ∈ 	� �θ− θ0�1 < δ. For the case in which pθ has form (1.7),
θ = �α1� � � � � αM�β1� � � � � βM�T, and straightforward calculation shows that, for
k = 1� � � � �M (i.e., θ1 = α1� � � � � θM = αM),[
l̇θ1k�j�y� − l̇θ2k�j�y�

]
= �pθ2�k�y� − pθ1�k�y��

=
[

exp
(
α2k + βT2ky

)
∑M
j′=1 exp

(
α2j′ + βT2j′y

) − exp
(
α1k + βT1ky

)
∑M
j′=1 exp

(
α1j′ + βT1j′y

)
]
�(6.3)

For k =M+ 1� � � � �2M (i.e., θM+1 = β1� � � � � θ2M = βM),[
l̇θ1k�j�y� − l̇θ2k�j�y�

]
= y�pθ2�k−M�y� − pθ1�k−M�y���

Thus, the uniform Lipschitz condition will hold if the covariate space Y is
bounded and, for each k, (6.3) is bounded by a constant times �θ1 − θ2�α1 for
some α > d/2.
Then asymptotic normality and efficiency of �θ̂n��n� follow as long as the

two classes


l̇θ0k�j�·�� j = 1� � � � �M�k = 1� � � � � d�{
pθ�j�·�∑M

j′=1 λj′
[
pθ
(
j′�·)/G(pθ�j′�·�)] � �θ− θ0�1 < δ�j = 1� � � � �M

}
�

are Fl0-Donsker for each l = 1� � � � � s, for some δ > 0. The limiting covariance
structure of �θ̂n��n� can be explicitly written down by substituting the chosen
model pθ0 into the information bound formulae.

7. Proofs.

Proof of Theorem 4.1. The efficient score function for θ in P can be cal-
culated by identifying a tangent a′ ∈ L02�G� satisfying E��l̇θ − l̇ga′��l̇ga�� = 0
for all a ∈ L02�G�, and verifying that the tangent space of G, Ṗ2, equals R�l̇g�,
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the closure of the range of the score for g. Using (4.1) and (4.2), we calculate

0=E
[{
l̇θ�I�Y� − l̇ga′�I�Y�

}{
l̇ga�I�Y�

}]

=E
[[
ẇI�Y�θ�
wI�Y�θ�

− a′�Y�
]
a�Y�

]

−E
[
E

[
ẇI�Y�θ�
wI�Y�θ�

− a′�Y��I
]
E
[
a�Y��I]]

=
∫ { s∑
i=1
λi

[
ẇi�y� θ�
wi�y� θ�

− a′�y�

−E
[
ẇi�Y�θ�
wi�Y�θ�

− a′�Y��I = i
]]
w̃i�y� θ�

}
a�y�dG�y��

(7.1)

Since this equality holds for all a ∈ L02�G�, it follows that the quantity in
braces must vanish almost everywhere in L02�G�, which leads to a Fredholm
integral equation of the second kind:

a′�y� −
∫
a′�z�K�y� z�dG�z� = φ'�y��(7.2)

with kernel K and function φ' given by K�y� z� = ∑si=1 ri�y� θ�w̃i�z� θ� and
φ'�y� =∑si=1 ri�y� θ�l̇θ�i� y�.
We suppress the dependence of a′, K and φ' on θ and G. As in Tricomi

(1957), since the kernel is Pincherle–Goursat (i.e., it factors in y and z), the
Fredholm equation (7.2) can be equivalently expressed as an algebraic system
of s equations in s unknowns Az = B, where z = �z1� � � � � zs�T are unknowns,
A = Is − �aij� = Is −G�rw̃T� and B = �bT1 � � � � � bTs �T, with

aij=
∫
rj�y�w̃i�y�dG�y� = λjG�rw̃iw̃j��

bj=
∫
φ'�y�w̃j�y�dG�y� =

s∑
i=1
λiG

(
l̇θ�i�Y�rw̃iw̃j

)
�

(7.3)

It is easily seen that A = Mλ, where M is the matrix defined in (3.1), so
that A has rank s − 1. Letting M− be a generalized inverse of M, we solve
z = λ−1M−B, which implies

a′�y� = φ'�y� +BT�M−�Tλ−1r = φ'�y� +G(φ'w̃T)�M−�Trw̃�

Set l̇'θ = l̇θ − l̇ga′, which is unique since �l̇ga′��x� = a′�y� − G�a′w̃i� is in-
dependent of the choice of M−. This follows by Lemma 5.2(iv) of GVW, since
rw̃ − G�rw̃w̃i� ∈ Range�M�. Since G�a′� is not necessarily equal to zero, we
center by taking a' = a′ − G�a′� ∈ L02�G�, and set l̇'θ = l̇θ − l̇ga' = l̇θ − l̇ga′,
which is unique and orthogonal to R�l̇g�. A slight adaptation of Theorem 3 of
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BKRW (page 123) proves that if the graph G'�θ� is connected for all θ in some
neighborhood of θ0, then Ṗ2 = 
a −E�a�I�� a ∈ L02�G� = R�l̇g�, so that l̇'θ is
orthogonal to Ṗ2 and is therefore the efficient score function.
Nonsingularity of I�θ0� is shown in the proof of Theorem 5.3. Straightfor-

ward calculation, aided with the identity
∑s
i=1 λiG�w̃ir� = 1, yields the form

(4.6) of the inverse information when s = 2.

Proof of Theorem 4.2. Consider the parameter G as a functional of the
model: ν�P�θ�G�� = χ�G� = G. Let χ̇ denote the pathwise derivative of χ,
and χ̇T its adjoint. Let �l̇Tg l̇g�' be the information bound operator for estima-
tion of G, viewed as a map from L2�G� and L2�G�. We apply Corollary 3 of
Begun, Hall, Huang and Wellner (1983), proved in BKRW (pages 218–220),
which states that if ν is pathwise differentiable at P0, Ṗ = R�l̇g� + R�l̇θ�,
R�χ̇T� ⊂ R�l̇Tg l̇g�, and �l̇Tg l̇g�'−1 and I−1�θ� exist, then the inverse information
covariance functional for ν equals

I−1ν �h1� h2�=E
[
χ̇Tπh1�l̇Tg l̇g�'−1χ̇Tπh2

]
+E[χ̇Tπh1a']TI−1�θ�E[χ̇Tπh2a']�

(7.4)

where a' is the unique tangent in L
0
2�G� satisfying E��l̇θ− l̇ga'��l̇ga�� = 0 for

all a ∈ L02�G�.
Since χ is just the identity, it is straightforward to show [see BKRW, Ex-

ample 1, page 191 and BKRW, panel (5), page 58] that χ̇Tπh�y� = h�y�−G�h�
for a projection map πh, h ∈ H. The operator �l̇Tg l̇g�'−1 is calculated by GVW
(pages 1089–1091), and requires that r�y� θ0� and r−1�y� θ0� are bounded
on Y. Substituting it and χ̇Tπh�y� = h�y� − G�h� into (7.4) and calculation
shows that I−1ν �h1� h2� equals expression (4.8) with a' as in the proof of The-
orem 4.1. ✷

Proof of Theorem 5.1. For fixed θ, let �n�θ� = ��n1�θ�� � � � ��ns−1�θ��1�T
be the solution of the system (1.12). Since θ is fixed, �n�θ� →a�s� V�θ� by Propo-
sition 2.1 of GVW [page 1081]. Since each λ−1ni rni�·� θ� is a bounded function
of y, if the processes{

Cni�v� ≡
1
ni

ni∑
j=1
log
{

wij�θ�v−1i∑s
k=1 λnkwkj�θ�v−1k

}
� v = �v1� � � � � vs�T ∈ V

}
�

V ≡ �0�∞�s−1 × 1
(7.5)
converge uniformly onV, then the log profile partial likelihood ln1pro satisfies,
for each fixed θ ∈ 	

1
n
ln1pro�θ�x� →a�s�

s∑
i=1
λi

∫
log
{

wi�y� θ�V−1i �θ�∑s
k=1 λkwk�y� θ�V−1k �θ�

}
w̃i�y� θ0�dG�y�
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= l1pro�θ��
Since l1pro�θ� and ln1pro�θ�x� for n > N are strictly concave on 	, this implies
θ̂n→a�s� θ0 as n→∞, applying Theorem II.1 in Appendix II of Andersen and
Gill (1982).
Uniform convergence of the processes in (7.5) can be established by the

bracketing entropy Glivenko–Cantelli Theorem 2.4.1 of Van der Vaart and
Wellner (1996). ✷

To prove consistency of �n, some additional notation is needed. Where pos-
sible, it matches the notation used by GVW. Define sets of s − 1 equations,
which correspond to (1.12), by

1 = �ni��1� � � � ��s−1�1� θ�� 1 =Hni�V1� � � � �Vs−1�1� θ�(7.6)

for i = 1� � � � � s− 1, θ ∈ 	, where

�ni�u1� � � � � us� θ� ≡
1
ui

∫ wi�y� θ�∑s
j=1�λnjwj�y� θ��/uj

d�n�y�

and Hni equals �ni with �n replaced by Fn0. Reparametrize by setting zj =
log
λnj/uj, and define 
ni�z1� � � � � zs� θ� = �ni�λn1e−z1� � � � � λnse−zs� θ� − λni
and Kni�z1� � � � � zs� θ� =Hni�λn1e−z1� � � � � λnse−zs� θ� − λni. Then (7.6) become
0 = 
ni��1� � � � ��s−1� log
λnsθ�� 0 =Kni�Z1� � � � �Zs−1� log
λns� θ�

for i = 1� � � � � s−1� θ ∈ 	. Set �n = ��n1� � � � ��ns�T, and similarly definedHn,

n and Kn. Observe that 
n�z� θ� = ∇�n�z� θ�, where �n� Rs × 	 → R1 is
given by

�n�z� θ� =
∫
log

[
s∑
i=1
eziwi�y� θ�

]
d�n�y� −

s∑
i=1
λnizi�

Similarly, we can write Kn�z� θ� = ∇Dn�z� θ�, where Dn equals �n with �n
replaced by Fn0.
As proved in GVW (pages 1079–1080), if the graph G'�θ� is connected, then

�n�z� θ� andDn�z� θ� are convex functions of z (θ fixed). Thus the reparametri-
zation allows us to use convexity theory to conclude consistency.
For an s-vector u ∈ Rs, define

w̃�u� ≡ diag�u−1�w� r�u� ≡ �λTw̃�u��−1�
rn�u� ≡ �λTn w̃�u��−1� rni�u� ≡ �λniw̃irn�u���

Therefore, w̃, r, rn and rni are given by

w̃ = w̃�W� = diag�W−1�w� r ≡ �λTw̃�−1�
rn ≡ �λTn w̃�−1� rni ≡ �λniw̃irn��



SEMIPARAMETRIC BIASED SAMPLING MODELS 181

We can rewrite the functions �n, Hn, �n and Dn in this notation:

�n�u� θ� =
∫
rn�u� θ�w̃�u� θ�d�n�

Hn�u� θ� =
∫
rn�u� θ�w̃�u� θ�dFn0�

�n�z� θ� =
∫
log

[
s∑
i=1
eziwi�θ�

]
d�n −

s∑
i=1
λnizi�

Dn�z� θ� =
∫
log

[
s∑
i=1
eziwi�θ�

]
dFn0 −

s∑
i=1
λnizi�

Introduce functions H and D equal to Hn and Dn, respectively, with λni,
rn and Fn0 replaced with λi, r and F0. Finally, define �̃n�z� θ� =
�n�z� θ� − �n�Z�θ� and D̃�z� = D�z� − D�Z�, where Z ≡ �Z1� � � � �Zs�T,
Zi ≡ log
λi/Vi0. Since �n�z� θ� and D�z� θ� are convex functions of z for
each θ ∈ 	, so are �̃n and D̃.
Using this notation, we establish consistency, which depends on the unique-

ness of �n�θ̂n� and V�θ0� as solutions of the systems of equations (7.6), to-
gether with convexity of �̃n�·� θ̂n� and D̃�·� θ0�.
The following lemma generalizes Lemma 5.3 in GVW, allowing the function

�̃n to depend on θ.

Lemma 7.1. Assume hypotheses (ii) of Theorem 5.1 and (iv) of Proposi-
tion 5.1. Then

�̃n�z� θ̂n� →a�s� D̃�z� θ0�(7.7)

as n→∞ with λni → λi > 0 for each fixed z ∈ Rs. Since �̃n is convex, it also
holds that

sup
z∈C

∣∣�̃n�z� θ̂n� − D̃�z� θ0�∣∣→a�s� 0(7.8)

as n→∞ with λni→ λi > 0 for any compact subset C ⊂ Rs.

Proof of Lemma 7.1. Define

q�z� y� θ� ≡ log
{∑s

i=1 e
ziwi�y� θ�∑s

i=1 eZiwi�y� θ�
}
�

Observe that q�z� y� θ� is a bounded function of y and θ. Let 	0 be a neigh-
borhood of θ0 for which (iv) of Proposition 5.1 holds. Towards showing (7.7),
we have

�̃n�z� θ̂n� =
s∑
j=1
λnj�nj

[
q�z�Y� θ̂n�

]
−
s∑
i=1
λni�zi −Zi��
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Expand q about θ0, giving, for fixed z,

�nj
[
q�z�Y� θ̂n�

]
= �nj

[
q�z�Y� θ0�

]
+�θ̂n − θ0�T ∗ �nj

[∑s
i=1 e

ziẇi�Y�θ'�∑s
i=1 eziwi�Y�θ'�

−
∑s
i=1 e

Ziẇi�Y�θ'�∑s
i=1 eZiwi�Y�θ'�

]

for a θ' between θ0 and θ̂n. The first piece converges almost surely to
∫
q�z� y�

θ0�w̃j�y� θ0�dG�y� by the strong law of large numbers (as in Lemma 5.3 of
GVW), while the second piece is op�1� because θ̂n − θ0 →p 0 and the �nj�·�
term is Op�1� for each j = 1� � � � � s and k = 1� � � � � d. Here continuity of each
wi and ẇi/wi in θ at θ0 and hypothesis (iv) of Proposition 5.1 are used. Thus
(7.7) holds.
Since �̃n is convex, (7.8) follows from (7.7), using Theorem II.1 in Appendix

II of Andersen and Gill (1982) [also see Exercise 3.2.4 of Van der Vaart and
Wellner (1996)]. ✷

Proof of Proposition 5.1. Our proof closely follows the proof of Propo-
sition 2.1 in GVW. Choose N so that, for n > N, θ̂n is in a neighborhood
	0 of θ0 for which (iv) of Proposition 5.1 holds. Fix n > N. Since the graph
G'�θ̂n� is connected, Lemma 1 of Vardi [(1985), page 197] implies that V�θ̂n�
is the unique solution of the right equation system in (7.6). Therefore, Zn =
�Zn1� � � � �Zns�T, with Zni = log
λi/Vi�θ̂n�, is the unique minimizer of
D�z� θ̂n�, and thus also of D̃�z� θ̂n�, subject to zs = log
λs. Let �n be the
corresponding minimizer of Dn�z� θ̂n�, which also minimizes D̃n�z� θ̂n� subject
to zs = log
λns. Also let Z be the unique minimizer of D̃�z� θ0�. Then for any
compact set C ∈ Rs with Z in the interior of C, it follows from (7.7) and (7.8)
of Lemma 7.1, and the definition of D̃�z� θ� and Z, that inf z∈∂C �̃n�z� θ̂n� →a�s�

inf z∈∂C D̃n�z� θ0� > 0, while �̃n��n� θ̂n� →a�s� D̃�Z�θ0� = 0. The convexity
of �̃n�z� θ� in z for all θ ∈ 	0 implies that �n ∈ C for all n greater than
some N with probability 1. Since C can be made arbitrarily small, a sim-
ple ε − δ argument yields �n →a�s� Z. Since �n = ��n1� � � � ��ns�T with �ni =
log
λni/�ni�θ̂n�, where �n�θ̂n� = ��n1�θ̂n�� � � � ��ns−1�θ̂n��1�T is the solution
of the left equation system in (7.6), it follows that �n�θ̂n� →a�s� V�θ0�. The
proof that �n→a�s� W�θ0� is similar and is omitted. ✷

Proof of Theorem 5.2. This proof closely follows the proof of Theorem 2.1
in GVW. Fix h ∈ H, with H defined in (5.3), which satisfies G�h� <∞. Write

sup
h∈H

∣∣�n�hrn��n�θ̂n��� −F0�hr�θ0��∣∣(7.9)

≤ sup
h∈H

∣∣∣�n(h[rn��n�θ̂n�� − r�θ̂n�])∣∣∣
+ sup
h∈H

∣∣�n�hr�θ̂n�� −F0�hr�θ0��∣∣
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≤
∥∥∥∥rn��n�θ̂n��r�θ̂n�

− 1
∥∥∥∥
∞
��n�her�θ̂n���(7.10)

+ sup
h∈H

∣∣�n�hr�θ̂n�� −F0�hr�θ0��∣∣�
Since θ̂n →a�s� θ0 and �n�θ̂n� →a�s� V�θ0� by Theorem 5.1 and Proposition 5.1,
and rn�u�/r is continuous and bounded in y and θ, the � · �∞ term converges
almost surely to zero. The term ��n�her�θ̂n��� is stochastically bounded. Next,
we show that

sup
h∈H

∣∣�n�hrn�θ̂n�� −F0�hr�θ0��∣∣→a�s� 0�(7.11)

Expanding about θ0 by differentiating rn�y� θ� with respect to θ, (7.11) is
bounded above by

sup
h∈H

∣∣�n�hrn�θ0�� −F0�hr�θ0��∣∣(7.12)

+
s∑
i=1
λni sup

h∈H

∣∣∣∣(θ̂n − θ0)T ∗
∫
h�y�

(
−
s∑
k=1
λnk

[
ẇk�y� θ'�
wk�y� θ'�

−
∫ ẇk�z� θ'�
wk�z� θ'�

w̃k�z� θ'��n�d�n�z�
]

(7.13)

× w̃k�y� θ'��n�r2n�y� θ'�
)
d�n�y�

∣∣∣∣�
where w̃k�z� θ��n� ≡ wk�z� θ�/Wk�θ��n�. Exactly as in GVW, piece (7.12) con-
verges to zero almost surely by Pollard’s Glivenko–Cantelli theorem [see Dud-
ley (1984), Theorems 11.1.2 and 11.1.6] for H as in (5.3). By (iv), (vi) and (3.2),
and since h ∈ L1�G�, each supremum in (7.13) is op�1�, so that (7.11) holds. It
follows from (7.11) and (7.10) that piece (7.9) converges almost surely to zero.
Then

��n�h� −G�h�� =
∣∣∣∣�n�hrn��n�θ̂n����n�rn��n�θ̂n���

− F0�hr�θ0��
F0�r�θ0��

∣∣∣∣
≤ ��n�hrn��n�θ̂n��� −F0�hr�θ0���

�n�rn��n�θ̂n���

+F0�hr�θ0��
F0�r�θ0��

��n�rn��n�θ̂n��� −F0�r�θ0���
�n�rn��n�θ̂n���

�

so (5.4) follows from (7.11) with h = 1. ✷

Proof of Theorem 5.3. We apply the Master theorem; see, for example,
BKRW (Theorem 1, page 312). First we calculate the matrix ?̇0. Differentia-
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tion of P0ψ0�X� gives

?̇0=P0∇θ
[
ẇI�Y�θ�
wI�Y�θ�

−φ�Y�θ�
]∣∣∣∣
θ0

+ ∇θd�θ�
∣∣
θ0
P0�−eI + r�Y�θ0�� + d�θ0�P0∇θ�r�Y�θ���θ0 �

(7.14)

The term P0�−eI + r�Y�θ0�� = 0, so that it is not necessary to compute
∇θd�θ��θ0 . Direct differentiation using the chain rule and the property
M−MM− =M− of a 
1�2-generalized inverse shows that the rightmost term
of (7.14) is also the zero-vector. Thus ?̇0 equals the first term on the right-hand
side of (7.14). Then, differentiation (again using the chain rule) and tedious
calculation (which can be readily checked for the case s = 2) shows that ?̇0
equals −I�θ0� as displayed in (4.4).
Next we show invertibility of ?̇0 = −I�θ0�. Consider I�θ0� expressed as

an expected conditional variance as in Remark 4.3. For b ∈ Rd, evidently
bTI�θ0�b ≥ 0, with equality if and only if

Var
(
bT
[
ẇI�Y�θ0�
wI�Y�θ0�

− a'�Y�θ0�
]∣∣∣∣I = i

)
= 0

for each i = 1� � � � � s, which holds if and only if bT��ẇi�y� θ0�/wi�y� θ0�� −
a'�y� θ0�� is constant a.s. with respect to the law Fi0, for each i = 1� � � � � s.
Thus (I) implies ?̇0 and I�θ0� are nonsingular.
Direct calculation shows thatP0�ψθ0�X�ψθ0�X�T�, where the influence func-

tion ψθ0 is as defined in (5.11), equals I�θ0�. Therefore, A = �−I−1�θ0��I�θ0�
�−I−1�θ0��T = I−1�θ0�.
Next we verify (5.12), that is, that the linearization condition of the Master

theorem [(GM2) of BKRW Theorem 1, page 312] holds. Writing �n�ψn�X�θ��n
�θ��n�� − ψ�X�θ�V�θ�P��� as ��n − P��·� + P�·�, the ��n − P��·� term can
straightforwardly be shown to be op�n−1/2�, so it suffices to show that

P
[
ψn
(
X�θ��n�θ��n�

)− ψ(X�θ�V�θ�P�)]

= P
[
ψn
(
X�θ��n�θ��n�

)− ψn(X�θ�V�θ�P�)](7.15)

+P
[
ψn
(
X�θ�V�θ�P�)−ψ(X�θ�V�θ�P�)] = op�n−1/2��(7.16)

where ψn�X�θ�V�θ�P�� equals ψ�X�θ�V�θ�P�� with the λi’s replaced with
λni’s. To verify that (7.15) is op�n−1/2�, we show that P�ψn�X�θ�V�θ�P��� is
Fréchet differentiable. Throughout the proof, the λi’s in all expressions are
implicitly assumed to be λni’s. With GP identified with P and GQ identified
with Q, direct calculation shows that the Gateaux derivative ∂/∂α��1−α�P+
αQ��ψn�X�θ�V�θ� �1 − α�P + αQ����α=0 of P�ψn�X�θ�V�θ�P��� equals �Q −
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P�ψn�X�θ�V�θ�P�� plus

GP

[
s∑
i=1
λni
ẇi�θ�
wi�θ�

w̃i�θ�
[
di −

s∑
k=1
rk�θ�dk

]]

−A�θ�M−�θ�GP
{[
d1 −

s∑
k=1
rk�θ�dk

]
w̃1�θ�� � � � �(7.17)

[
ds −

s∑
k=1
rk�θ�dk

]
w̃s�θ�

}T
�

where di ≡ d/dαVi�θ� �1 − α�P + αQ��α=0 ∗ V−1i �θ�P�. The di are found by
solving the system of equations

∂

∂α

[
s∑
l=1
λnl
(�1− α�GP + αGQ)[( wi�Y�θ�V−1i

(
θ� �1− α�GP + αGQ)∑s

k=1 λnkwk�Y�θ�V−1k
(
θ� �1− α�GP + αGQ)

)

× w̃l
(
Y�θ� �1− α�GP + αGQ)]

]∣∣∣∣∣
α=0

= 0�

i = 1� � � � � s− 1�
with solution di = D�i� ��GQ−GP��w̃�θ�P��, whereD−λ−1n M−�θ�P�M�θ�P�λ

n
with �i� � denoting the ith row of the matrix. Substituting the di into (7.17)
yields that the Gateaux derivative equals

�Q−P�ψn�X�θ�V�θ�P��

+GP
[
s∑
i=1

(
λni
ẇi�θ�
wi�θ�

− [A�θ�M−1�θ�]� �i�
)

(7.18)

× w̃i�θ�
[
D�i� � −

s∑
k=1
rk�θ�D�k� �

]]

× �GO −GP�(w̃�θ�P�)�
A key ingredient in this calculation is that P�−eI + r�θ�� = 0, which implies
the complicated term d/dα�A�θ� �1−α�GP+αGQ�M−�θ� �1−α�GP+αGQ���α=0
does not appear in the derivative. Now,

GP

[
s∑
i=1

(
λni
ẇi�θ�
wi�θ�

− [A�θ�M−�θ�]� �i�
)

× w̃i�θ�
[
D�i� � −

s∑
k=1
rk�θ�D�k� �

]]
= 0�

(7.19)

as can easily be directly verified (by calculatingA�θ� andM−�θ� using (4.7)) for
the case s = 2. Thus, the Gateaux derivative equals �Q−P�ψn�X�θ�V�θ�P��.
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To prove (7.15) is op�n−1/2�, it is then enough to show that the Gateaux deriva-
tive is also a Fréchet derivative with respect to the norm �Q−P� ≡ sup
∑si=1 �∫
1A�y�w̃i�y� θ0�d�GQ −GP��y��� A ∈ B. Thus, it suffices to show that∣∣∣Q[ψn(X�θ�V�θ�Q�)]−P[ψn(X�θ�V�θ�P�)]

−�Q−P�
[
ψn
(
X�θ�V�θ�P�)]∣∣∣ = o��Q−P���(7.20)

The expression on the left-hand side of (7.20) equals �Q�ψn�X�θ�V�θ�Q�� −
ψn�X�θ�V�θ�P����, and∣∣∣Q[ψn(X�θ�V�θ�Q�)− ψn(X�θ�V�θ�P�)]∣∣∣

�Q−P�

=

∣∣∣Q[ ∂∂αψn�X�θ�V(θ� �1− α�P+ αQ�)
∣∣∣
α=0

]∣∣∣
�Q−P� ∗Op�1�

=
∣∣∣∣∣GQ

[
s∑
i=1

(
λni
ẇi�θ�
wi�θ�

− [A�θ�M−�θ�]� �i�
)

(7.21)

× w̃i�θ�
[
D�i� � −

s∑
k=1
rk�θ�D�k� �

]]∣∣∣∣∣
×
∣∣(GQ −GP)(w̃�θ�P�)∣∣

�Q−P� ∗Op�1�

= op�1� ∗Op�1� ∗Op�1� = op�1� as �Q−P� → 0�

using (7.19) to conclude that expression (7.21) is op�1� as �Q−P� → 0. Thus
(7.15) is op�n−1/2�.
To show that (7.16) is op�n−1/2�, expand ψn about λ = �λ1� � � � � λs�T, so that

P
[
ψn
(
X�θ�V�θ�P�)− ψ(X�θ�V�θ�P�)]

= �λn − λ�T ∗P
[
∂

∂λ
ψ
(
X�θ�V�θ�P�)∣∣

λ'

](7.22)

for a vector λ' between λ and λn. Since ψ is the efficient score function for θ,

P

[
∂

∂λ
ψ
(
X�θ�V�θ�P�)∣∣

λ'

]
= P

[
∂

∂λ

[
l̇θ�X� − IθGI−1G l̇g�X�

]�λ'
]

= P
[
∂

∂λ
l̇θ�X��λ'

]
− ∂
∂λ

[
IθGI

−1
G

]∣∣
λ'
∗P
[
l̇g�X��λ'

]
(7.23)

−[IθGI−1G ]∣∣λ' ∗P
[
∂

∂λ
l̇g�X��λ'

]
�
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Now, if we view the biased sampling density p of (1.1) as a function of the
parameter triplet �λ� θ�G�, then orthogonality of the score for λ and the closed
linear span of �l̇θ� l̇g� implies that the first and third terms in the sum (7.23)
are zero. The second term in the sum is also zero since score functions have
zero expectation. Therefore, (7.16) is op�n−1/2�, completing the proof that (5.12)
holds.
It remains to verify the stochastic condition of the Master theorem [BKRW,

condition (GM1), page 312; equivalent, Van der Vaart (1995), condition (3),
Theorem 1]. By Lemma 1 of Van der Vaart (1995), it suffices to show that, for
each component l = 1� � � � � d,{

ψθl − ψθ0l � �θ− θ0�1 < δ
}

(7.24)

is Donsker for some δ > 0 and

P0�ψθl − ψθ0l�2→ 0 as θ→ θ0�(7.25)

From (5.11), we calculate

ψθl�x� − ψθ0l�x� =
[
ẇil�y� θ�
wi�y� θ�

− ẇil�y� θ0�
wi�y� θ0�

]

−
s∑
k=1

{
rk�y� θ�

[
ẇkl�y� θ�
wk�y� θ�

− ẇkl�y� θ0�
wk�y� θ0�

]}

−
s∑
k=1

{
ẇkl�y� θ0�
wk�y� θ0�

�rk�y� θ� − rk�y� θ0��
}

+Al�θ�M−�θ�λ−1�−ei + r�y� θ��

−Al�θ0�M−�θ0�λ−1�−ei + r�y� θ0��

≡ f1lθ�x� − f2lθ�x� − f3lθ�x� + f4lθ�x� − f5lθ0�x��
where the 1×s matrix Al�θ� is the lth row of the matrix A�θ� defined in (4.5).
To show that the class S1lδ ≡ 
f1lθ� �θ − θ0�1 < δ is Donsker for some

δ > 0 for each l = 1� � � � � d, we use the uniform Lipschitz hypothesis (viii) on
the weight functions and apply the Jain–Marcus central limit theorem; see,
for example, Van der Vaart and Wellner [(1996), pages 213–214]. For fixed
i ∈ 1� � � � � s, k = 1� � � � � d, choose δ, K and α > d/2 so that (viii) holds. Define
	δ ≡ 
θ ∈ 	� �θ − θ0�1 < δ and Znil�y� θ� ≡ n−1/2��ẇil�y� θ�/wi�y� θ�� −
�ẇil�y� θ0�/wi�y� θ0���, so that S1lδ ⊂

⋃s
i=1S1ilδ, with S1ilδ = 
n1/2Znil�y� θ��

θ ∈ 	δ. Set Mnk = n−1/2K for k = 1� � � � � n, so that ∑nk=1EM2
nk = K2 =

O�1�. Define a semimetric ρα on 	δ by ρα�fθ1� fθ2� = �θ1 − θ2�α1 for fθ1� fθ2 ∈
S1ilδ. We require that α > d/2 because this is necessary and sufficient for
the semimetric to be Gaussian dominated, that is, to have a finite entropy
integral [satisfying the third panel display on page 212 of Van der Vaart and
Wellner (1996)]. Next, we verify that the triangular array of norms �Znil�	δ =
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supθ∈	δ �Znil�·� θ�� satisfies the Lindeberg condition of Theorem 2.11.11 in Van
der Vaart and Wellner (1996):

n∑
i=1
E
{�Znil�2	δ}1
�Znil�	δ > η → 0 for every η > 0�

This follows because (viii) implies E�Znil�2	δ < n−1K2δ2α = O�n−1� and
1��Znil�	δ>η� ≤ 1�Kδα>ηn1/2� → 0 as n→∞ for every η > 0.
Since the sequence of covariance functions Cov�Zni1l�Y1� θ��Zni2l�Y2� θ��

converges pointwise in 	δ ×	δ for each i1 �= i2 ∈ 
1� � � � � s, the Jain–Marcus
CLT yields that, for each fixed i = 1� � � � � s, l = 1� � � � � d, S1ilδ is Donsker. Thus,
S1lδ = 
f1lθ� �θ− θ0�1 < δ is Donsker.
For each l = 1� � � � � d, the class 
f2lθ� �θ − θ0�1 < δ is easily seen to be

Donsker, using the assumption that the class Wδ of (5.8) is Donsker and the
proof that 
f1lθ� �θ− θ0�1 < δ is Donsker.
To show S4lδ ≡ 
f4lθ� �θ−θ0�1 < δ is Donsker, takeM−�θ� as in (4.7). Con-

tinuous invertibility ofM11�θ� at θ0 and sup�θ−θ0�1<δ G��ẇ2kl�θ�/wk�θ��2w̃k�θ0��
<∞ imply that each element of the vector Al�θ�M−�θ� is a bounded function
uniformly on 	δ. Since each 
ri�θ�� �θ − θ0�1 < δ is Donsker and uniformly
bounded, it follows that S4lδ is Donsker, as is S5lδ ≡ 
f5lθ0.
Lastly, we show S3lδ ≡ 
f3lθ� �θ − θ0�1 < δ is Donsker. Fix k ∈ 
1� � � � � s.

Define dk�y� θ� = rk�y� θ� − rk�y� θ0�. By continuity of rk in θ at θ0, for any
fixed positive ε < 1 we can choose δ so that, for each y ∈ Y, sup�θ−θ0�1<δ �
dk�y� θ�� < ε. Write the class S3lδ as the sum of the two classes{

ẇkl�y� θ0�
wk�y� θ0�

1[�ẇkl�y�θ0�/wk�y�θ0��≤ 2ε
1−ε
] ∗ dk�y� θ�� �θ− θ0�1 < δ

}
�(7.26)

{
ẇkl�y� θ0�
wk�y� θ0�

1[�ẇkl�y�θ0�/wk�y�θ0��> 2ε
1−ε
] ∗ dk�y� θ�� �θ− θ0�1 < δ

}
�(7.27)

Since Ẇ of (5.9) is Donsker, class (7.26) is Donsker as the product of uniformly
bounded Donsker classes. Class (7.27) may not be uniformly bounded. We
invoke Theorem 2.10.6 of Van der Vaart and Wellner (1996), which applies to
Lipschitz transformations of Donsker classes. It asserts that if∣∣∣∣ẇkl�y� θ0�wk�y� θ0�

1[�ẇkl�y�θ0�/wk�y�θ0��> 2ε
1−ε
] �dk�y� θ1� − dk�y� θ2��

∣∣∣∣
2

≤
∣∣∣∣ẇkl�y� θ0�wk�y� θ0�

1[�ẇkl�y�θ0�/wk�y�θ0��> 2ε
1−ε
] − dk�y� θ1�

∣∣∣∣
2

+
∣∣∣∣ẇkl�y� θ0�wk�y� θ0�

1[�ẇkl�y�θ0�/wk�y�θ0��> 2ε
1−ε
] − dk�y� θ2�

∣∣∣∣
2

for all θ1� θ2 ∈ 	δ, then class (7.27) is Donsker. This follows by straightfor-
ward algebra, so that the kth summand of S3lδ is Donsker. Then S3lδ itself is
Donsker, and condition (7.24) holds.
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It remains to verify (7.25). Hypotheses (iv), (vii) and (viii) imply that P0
�sup
�θ−θ0�1<δ�ψθl − ψθ0l�2� < ∞ for each l = 1� � � � � d. Thus, in view of the
dominated convergence theorem, it suffices to show that ψθl → ψθ0l pointwise
in x, for each l. This is true by continuity of the weights and scores for weights
in θ at θ0. ✷

Proof of Theorem 5.4. For h ∈ H, write

�n�h� θ̂n� =
√
n
(
�n
(
h� θ̂n��n�θ̂n�

)−�n
(
h� θ0��n�θ0�

))
(7.28)

+√n(�n(h� θ0��n�θ0�)−�n
(
h� θ0�V�θ0�

))
�(7.29)

Since G�h2er�θ0�� < ∞ and the class F is Donsker for each Fi0, piece (7.29)
satisfies

�√n��n�h� θ0��n�θ0�� −G�h� θ0�V�θ0��� −Z�h��H →p 0
by Theorem 2.2 of GVW. Expanding, write piece (7.28) as

√
n
(
�n�h� θ̂n��n�θ̂n�� −�n�h� θ0��n�θ0��

)
= �∇�n�h� θ'��n�θ'���T ∗

√
n�θ̂n − θ0�

(7.30)

for some θ' between θ0 and θ̂n, where ∇�n�h� θ� �n�θ�� ≡ ��∂/∂θ′1��n�h� θ′�
�n�θ′���θ′=θ� � � � � �∂/∂θ′d��n�h� θ′��n�θ′���θ′=θ�T. From representation (1.15) of
�n, the gradient ∇�n�h� θ��n�θ�� can be calculated by the chain rule, using
�∂/∂θ′��n�θ′��θ = An�θ�M−

n �θ�λ−1n �
n
�θ�, and equals

−�n
(
h
∑s
i=1 rni�θ� ẇi�Y�θ�wi�Y�θ�rn�θ�

)
�n�rn�θ��

+
�n
(∑s
i=1 rni�θ� ẇi�Y�θ�wi�Y�θ�rn�θ�

)
�n�rn�θ��

∗ �n�hrn�θ��
�n�rn�θ��

+An�θ�M−
n �θ�

[−�n�hw̃�θ�r2n�θ��
�n�rn�θ��

+ �n�w̃�θ�r2n�θ��
�n�rn�θ��

∗ �n�hrn�θ��
�n�rn�θ��

]
�

By uniform consistency of �n�h� θ̂n��n�θ̂n��, ∇�n�h� θ'��n�θ'�� converges in
probability to

−G
(
s∑
k=1
rk�θ0�

ẇk�θ0�
wk�θ0�

�h−G�h��
)

−A�θ0�M−�θ0�G
[
r�θ0�w̃�θ0��h−G�h��

]
= −G�ha'�θ0���

(7.31)

Thus for fixed h ∈ H, piece (7.28) converges in distribution to −G�ha'�θ0�� ∗
Zθ0 . We then have

�∇�n�h� θ'��n�θ'���T ∗
√
n�θ̂n − θ0�

= [(∇�n�h� θ'��n�θ'��)T +G�haT' �θ0��] ∗ √n�θ̂n − θ0�
−G�haT' �θ0�� ∗

√
n�θ̂n − θ0�
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= op�1� ∗Op�1� −G�haT' �θ0�� ∗
√
n�θ̂n − θ0�

⇒ −G�haT' �θ0�� ∗Zθ0 in l∞�H��

To establish the convergence of �′n�h� θ̂n� to Z′�h� of (5.6), it remains to
show that limn �′n has covariance (5.7). Using (7.30) and (7.31), write

�′n�h� θ̂n� =
1√
n

n∑
i=1

(
l̃θ0�Xi�

−G�haT' �θ0�� ∗ l̃θ0�Xi� + l̃G0�πh��Xi�

)
+ op�1�

→d Nd+1
(
0�
[
A11 A12�h�
A21�h� A22�h�h�

])
�

where l̃θ is the efficient influence function for θ and l̃G0 is the efficient influence
function forG when θ = θ0 is known. Evidently, A11 = I−1�θ0�. Since the scores
for θmust be orthogonal to the nuisance parameter scores, and l̃G0�πh� is in the
space of nuisance parameter scores, it follows that E

(
l̃θ0�X�l̃G0�πh��X�

) = 0.
Then elementary calculation yields A12�h� = −I−1�θ0�G�ha'�θ0�� and
A22�h�h� = G�haT' �θ0��I−1�θ0�G�ha'�θ0�� + I−1G0�h�h� = I−1G �h�h�. It follows
that AsymCov��′n�h1� θ̂n���′n�h2� θ̂n��, for h1� h2 ∈ H, matches the covariance
formula (5.7). ✷

Proof of Proposition 5.2. Adding and subtracting �n�w�θ̂n�� θ0� and
�n�w�θ0�� θ0�, and expanding about θ0, allows us to write

√
n��n −W0� =

[∇�n�w�θ̂n�� θ'��n�θ'�� +�n�ẇ�θ'�� θ0��n�θ0��
]T(7.32)

×√n�θ̂n − θ0�
+ √n��n�θ0� −W0�(7.33)

for some θ' between θ0 and θ̂n. By Proposition 2.2 of GVW, the process in (7.33)
converges in distribution to the first two lines of (5.13), with covariance given
by the first three lines of (5.14). Slutsky’s theorem and (7.31) show that expres-
sion (7.32) converges to the third and fourth lines of (5.13), with covariance
given by the third and fourth lines of (5.14). Since �n�θ0� has influence func-
tion l̃W0 = �l̃G0�πw1�θ0��� � � � � l̃G0�πws�θ0���T, the asymptotic covariance of the two
terms (7.32) and (7.33) equals

W
0

[
−G�w̃�θ0�aT' �θ0�� +G

(
ẇ1�θ0�
w1�θ0�

w̃1�θ0�� � � � �
ẇs�θ0�
ws�θ0�

w̃s�θ0�
)T]

×E[l̃θ0�X�l̃TW0�X�]�
Since E�l̃θ0�X�l̃G0�πh�� = 0 for h ∈ H, and each wi�·� θ0� ∈ H by require-
ment (5.8), the last expectation term is zero. ✷
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Proof of Proposition 5.3. Write

√
n��̂ni�h� θ̂n� −Fi0�h�� =

√
n

(
�n�hwi�θ̂n�� θ̂n��n�θ̂n��
�n�wi�θ̂n�� θ̂n��n�θ̂n��

(7.34)

−�n�hwi�θ0�� θ0��n�θ0��
�n�wi�θ0�� θ0��n�θ0��

)

+√n(�̂ni�h� θ0� −Fi0�h�)�(7.35)

The process of (7.35) converges in distribution to the first two lines of (5.15)
by Theorem 2.3 of GVW. Using the identity �∂/∂θ′�w̃i�y� θ′��θ′=θ = l̇θ�i� y�, a
Taylor expansion shows that piece (7.34) equals[∇�n�hw̃i�θ̂n��n�� θ'��n�θ'��+�n�hl̇θ'�i�Y�� θ0��n�θ0��

]T∗√n�θ̂n−θ0�+op�1�
for some θ∗ between θ0 and θ̂n, which converges in distribution to the term
in the last line of (5.15). From the expansion used by GVW [page 1107], the
influence function l̃Fi0 of �̂ni equals

l̃Fi0�πh� = l̃G0�πwi�θ0�h� +G�w̃i�θ0�h�W−1
0i l̃G0�πwi�θ0���

The asymptotic covariance between (7.34) and (7.35) equals[−G��hw̃i�θ0� −G�hw̃i�θ0���a'�θ0�� +G�hl̇θ0�i�Y��]TE[l̃θ0�X�l̃Fi�θ0��πh�]�
which is zero by the assumption that each wi�·� θ0� and each wi�·� θ0�h is
in H. ✷

Proof of Theorem 6.1, Corollary 6.1 and Corollary 6.2. Since the
weights are positive, the connectivity of G'�θ� for all θ in a neighborhood of θ0
holds automatically. As discussed in Section 3 of Gilbert, Lele and Vardi (1999),
the remaining conditions of identifiability Theorem 1.1 are met if hik�0� = 0
for each i = 1� � � � s − 1, k = 1� � � � � d, and for some i ∈ 
1� � � � � s − 1, the
set of functions 
hi1� � � � � hid is linearly independent. The MLE obtained by
procedure (1)–(3) exists uniquely in the limit with probability 1, as verified in
Example 6.1. In addition, methods for verifying the hypotheses of the theorems
in Section 5 were outlined in Example 6.1. ✷

8. Discussion and further problems. Results from a simulation study
of the MLE �θ̂n��n� in the two- and three-sample GLR models [Gilbert (1996);
Gilbert, Lele and Vardi (1999)] corroborate the large sample properties de-
scribed here. The simulation design utilized a quasi-Newton scheme to com-
pute the MLE via procedure (1)–(3). The log profile partial likelihood was
found to be smooth and strictly concave for the great majority of data config-
urations. Asymptotic unbiasedness and normality of �θ̂n��n� were confirmed,
as were consistency of the plug-in and bootstrap variance estimates. Further,
the likelihood ratio, Wald and efficient score tests were found to be consis-
tent and possess approximate chi-squared distributions, and profile partial
likelihood-based confidence sets for θ0 had accurate coverage probabilities.
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In summary, the maximum likelihood estimator in the semiparametric bi-
ased sampling model shares many properties with the maximum likelihood
estimator in Cox’s semiparametric proportional hazards model. The estimate
θ̂n is computed conveniently by maximizing a smooth quadratic log profile par-
tial likelihood, and then the NPMLE of the baseline distribution is computed.
The asymptotic properties of the joint MLEs are comparable, each converging
at rate n1/2 and achieving semiparametric efficiency, with similar forms and
derivations of information bounds. These similarities are not surprising, as
the s-group proportional hazards model, defined by λ�y� θ�i� = exp�θi�λ�y�s�
for i = 1� � � � � s, θ = �θ1� � � � � θs�T, θs ≡ 0, has the analytic form of an s-sample
biased sampling model (albeit with weight functions depending on the infinite-
dimensional parameter G) with wi�y� θ�G� = �1 − G�y��exp�θi�−1, where G is
the distribution function Y for the sth group.

Problem 8.1 (All weight functions unknown). As alluded to in the Intro-
duction, the one-sample biased sampling model (with no restrictions on G)
is rarely identifiable when the weight function depends on θ. In cases that
it is [see Gilbert, Lele and Vardi (1999), Theorem 1], no systematic estima-
tion procedure exists. In multiple-sample biased sampling models in which all
weight functions depend on an unknown parameter, the class of identifiable
models is larger [see Gilbert, Lele and Vardi (1999), Theorem 3]. If one of the
normalizing constants is known, the methodology given here applies. If not,
which is commonly the case, there does not exist a systematic procedure for
estimation. A thorough treatment of these situations would be of interest.

Problem 8.2 (Adaptive or nonparametric estimation of the weight func-
tions). In many problems, there may be little rationale for choosing a para-
metric form for the weight functions. For instance, consider the vaccine trial
Examples 1.1, 1.2, and 6.1. For vaccines against some heterogeneous patho-
gens, including HIV, there are very few data available to guide selection of
the weight functions. In this situation, it is of interest to consider more adap-
tive estimation of the 
wi. In the econometrics literature, Manski (1993) and
references therein consider estimation of the weight function in one biased
sample via kernel methods. Sun and Woodroofe (1997) consider one- and two-
sample biased sampling models in which the underlying distribution function
is specified parametrically, w2 = 1 if there is a second sample, and the weight
function w1 is estimated nonparametrically. They assume w1 is a monotone
density function and construct a consistent (penalized) maximum likelihood
estimator ŵ1. It would be of interest to investigate the asymptotic distribu-
tional properties of this estimator. Another approach is to estimate w1 by
smoothing splines through maximization of a roughness-penalized version of
the profile partial likelihood considered here. We are pursuing research in this
direction.
Adaptive or nonparametric estimation of the weight functions is of interest

in its own right, or as a goodness-of-fit diagnostic for checking the parametric
form of the weight functions.



SEMIPARAMETRIC BIASED SAMPLING MODELS 193

Acknowledgment. I am grateful to Jon Wellner for his very helpful and
kind guidance.

REFERENCES

Agresti, A. (1984). Analysis of Ordinal Categorical Data. Wiley, New York.
Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting processes: a large

sample study. Ann. Statist. 10 1100–1120.
Begun, J. M., Hall, W. J., Huang, W-M. andWellner, J. A. (1983). Information and asymptotic

efficiency in parametric-nonparametric models. Ann. Statist. 11 432–452.
Bickel, P. J., Klaassen, C. A., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive

Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore, MD.
Cosslett, S. R. (1981). Maximum likelihood estimator for choice based samples. Econometrika

49 1289–1316.
Cox, D. R. and Snell, E. J. (1989). The Analysis of Binary Data. 2nd ed. Chapman and Hall,

London.
Dudley, R. M. (1984). A course on empirical process. Ecole d’ Été de Probabilitiés de Saint Flour
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