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Summary. Consider a placebo-controlled preventive HIV vaccine efficacy trial. An HIV amino acid se-
quence is measured from each volunteer who acquires HIV, and these sequences are aligned together with
the reference HIV sequence represented in the vaccine. We develop genome scanning methods to identify
positions at which the amino acids in infected vaccine recipient sequences either (A) are more divergent
from the reference amino acid than the amino acids in infected placebo recipient sequences or (B) have
a different frequency distribution than the placebo sequences, irrespective of a reference amino acid. We
consider t-test-type statistics for problem A and Euclidean, Mahalanobis, and Kullback–Leibler-type statis-
tics for problem B. The test statistics incorporate weights to reflect biological information contained in
different amino acid positions and mismatches. Position-specific p-values are obtained by approximating
the null distribution of the statistics either by a permutation procedure or by a nonparametric estimation.
A permutation method is used to estimate a cut-off p-value to control the per comparison error rate at a
prespecified level. The methods are examined in simulations and are applied to two HIV examples. The
methods for problem B address the general problem of comparing discrete frequency distributions between
groups in a high-dimensional data setting.
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1. Introduction
The extensive genetic diversity of the HIV poses a formidable
challenge to the development of an efficacious preventive HIV
vaccine (HVTN, 2006). An HIV vaccine may prevent infec-
tions with viruses genetically similar to a virus represented
in the vaccine, but fail against genetically dissimilar viruses.
Data on the amino acid sequences of the viruses that in-
fect participants in preventive HIV vaccine efficacy trials can
be used to assess how the efficacy of the candidate vac-
cine depends on genetic mismatching of exposing viruses.
“Sieve analysis” methods have been developed for this pur-
pose, which are based on comparing the genetic distances
(to the vaccine sequence) of the sequences of infected vac-
cine recipients to the genetic distances of the sequences of
infected placebo recipients (Gilbert, Self, and Ashby, 1998).
Previously developed sieve analysis methods considered “low-
dimensional” cases in which viruses are classified exhaustively
by a small number of K genotypes/phenotypes, or are ordered
by K scalar summary measures of distance. However, there are
many thousands of distinct HIV genotypes as defined by the
amino acid sequence. Consequently, the problem of identify-
ing sequence positions that distinguish the two sets of infect-
ing viruses is a high-dimensional data problem, in which the
number of variables (sequence positions) exceeds the number

of observations (infected subjects). In a typical efficacy trial,
100–400 subjects are infected and 500–3300 sequence posi-
tions are studied.

The data set available from an efficacy trial that we con-
sider is the aligned HIV amino acid sequences sampled from
infected vaccine and placebo recipients, with one sequence
per subject. We develop techniques for “genome scanning,”
whereby at each position, the amino acids in the two aligned
sequence sets are compared to the amino acid at the corre-
sponding position in the reference sequence, and the goal is
to identify “signature positions” (see Figure 1). A signature
position is a position at which vaccinee sequences exhibit sig-
nificantly greater divergence from the reference amino acid
than the placebo sequences. Identifying a signature position
may suggest that amino acid changes in that position were
required in order for HIV to elude the vaccine-induced im-
mune response and hence establish infection. For example,
certain N-linked glycosylation positions in the glycoprotein
120 (gp120) region of HIV (gp120 is composed of a protein
and a carbohydrate and is exposed on the surface of the HIV
envelope), appear critically important for HIV to evade neu-
tralization (Wei et al., 2003), and the vaccine may fail to pro-
tect against viruses with certain mutant amino acids in these
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Figure 1. Illustration of amino acid sequence data available for genome scanning analysis, from six randomly selected
vaccine and placebo recipients who got HIV infected during the VaxGen trial, aligned together with the reference HIV vaccine
sequence GNE8. Each capital letter denotes an amino acid, which is a basic building block of proteins. A – denotes a gap that
arose in the alignment; gaps occur because the lengths of HIV sequences differ. The V3 loop region within the HIV protein
gp120 is shown, which consists of positions 297–329 of gp160 using the HXB2 strain numbering system (Kuiken et al., 2002).

positions. Finding a signature position could imply the neces-
sity to insert multiple different HIV strains into the vaccine,
with amino acid sequences that match contemporary circulat-
ing HIV strains, in order for the vaccine to protect broadly.
Therefore, the results of genome scanning analyses can guide
the design of new vaccines.

A “signature position” may alternatively be defined as a
position at which the amino acid frequency distributions differ
among the two sequence sets, irrespective of any reference
amino acid. We develop a methodology for detecting both
types of signature positions. Henceforth we refer to signature
positions involving (not involving) a reference amino acid as
type A (type B) signatures.

The data set we analyze derives from the first HIV vaccine
efficacy trial (Flynn et al., 2005). Healthy HIV uninfected
volunteers were randomized to receive vaccine (Nv = 3598) or
placebo (Np = 1805) and were tested for HIV infection every
6 months for 36 months. The vaccine was a recombinant en-
velope gp120 subunit vaccine, designed to prevent acquisition
of HIV by inducing antibodies that could bind to neutralizing
epitopes on HIV gp120 and destroy the virus before it infects
host cells. The vaccine did not prevent HIV infection, with
a similar rate of infection in the vaccine (241/3598 = 6.7%)
and placebo (127/1805 = 7.0%) groups. For 336 of the 368
infected participants three HIV isolates were sampled at the
time of HIV infection detection, and the amino acid sequence
of gp120 was determined by direct translation of the DNA
sequence for each isolate. Sequences from the same individual
were highly similar, and we considered one randomly selected
sequence from each subject. The 336 gp120 sequences were
aligned together with the two gp120 sequences that were rep-
resented in the vaccine construct, named MN and GNE8. The
alignment was constructed using ClustalX v.1.81 (Thomp-
son et al., 1997) and manually edited. Because GNE8 was
sampled more recently and was closer genetically to the in-

fecting sequences, it was used as the reference sequence in all
analyses. There are n1 = 217 vaccine group sequences and
n2 = 119 placebo group sequences, each of length p = 581.

Consideration of one of the most commonly used methods
for studying HIV signature positions, VESPA (Korber and
Myers, 1992; http://hiv-web.lanl.gov/content/hiv-db/

mainpage.html), demonstrates the need for new methodol-
ogy. VESPA is purely descriptive—it evaluates potential type
B signatures by comparing the frequency of the most common
amino acid at positions between two sequence sets, without
considering the particular amino acids involved, and with-
out using a probabilistic framework to control error rates.
Our approach to the scanning analysis divides into three
parts:

(i) For each position, construct a two-sample test statistic
that compares amino acid divergences (type A) or fre-
quencies (type B) between the two sequence sets;

(ii) Approximate the null distribution of the test statistics
across the set of studied amino acid positions, and obtain
position-specific p-values; and

(iii) Determine the set of signature positions as those with p-
value less than a cut-off pcut, estimated to control a false
positive error rate at a prespecified level.

For (i), various statistics for evaluating amino acid sequence
differences have recently been proposed, based on stan-
dardized Euclidean distance and Kullback–Leibler discrep-
ancy (Wu, Hsieh, and Li, 2001), and Mahalanobis distance
(Kowalski, Pagano, and DeGruttola, 2002). These metrics/
discrepancies were developed in different contexts than
genome scanning analysis, so their relative utility for our
application is unknown. Accordingly we develop and com-
pare test statistics based on all three of these approaches,
and for problem A, generalize the Euclidean-type statistics
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to incorporate weight functions that can make amino acid
distances more immunologically relevant and thus potentially
more predictive of vaccine efficacy.

For (ii), we consider two approaches to approximating the
null distributions. The first is a permutation procedure that
only uses information at individual positions. The second ap-
proach, following Pan (2003), pools information across all
positions and estimates the null distributions of the test statis-
tics directly and nonparametrically. Efron (2004) also pointed
out that a large number of tests present an opportunity to es-
timate the null distribution directly as an approach to coping
with high-dimensional data. We apply both approaches to ob-
tain unadjusted p-values for each of the positions. For (iii), we
apply a permutation method to estimate the cut-off p-value
pcut.

This article is organized as follows. Section 2 develops four
new test statistics for identifying type B signature positions
and two new test statistics for identifying type A signature
positions. Section 3 describes the procedures for obtaining
p-values and the method for estimating the cut-off p-value,
and describes four slightly modified test statistics that are
suitable for use with the nonparametric estimation method
for deriving p-values. Section 4 compares the performance of
the various tests in numerical studies, Section 5 presents two
examples, and Section 6 gives concluding remarks.

2. Genome Scanning Methods for Identifying
Signature Positions

2.1 Preliminaries
The data available for genome scanning analysis are n1 + n2

aligned amino acid sequences, one from each infected trial
participant (n1 vaccine arm; n2 placebo arm), all of which are
p amino acids long. For problem A the alignment also includes
the reference sequence, which is the HIV sequence represented
in the vaccine construct. The amino acids compose HIV pro-
teins, and the analysis considers the set of positions that
constitute the HIV proteins expressed by the tested vaccine.
Current vaccine candidates express proteins spanning p ∼
500–2600 positions (HVTN, 2006).

For the ith position and the jth sequence in the kth group,
k = 1, 2, we define a vector of indicators to represent the 20
amino acids possible at position i, including the possibility of
a gap which may have arisen in the alignment. Specifically,
let Ykj(i) = (Ykj(i, 1), . . . , Ykj(i, 21))

T , where Ykj (i, a) is 1 if
amino acid a is at position i and 0 otherwise, a = 1, . . . , 20
(a = 1 represents A, Alanine; a = 2 represents C, Cysteine;
and so on in alphabetical order), and a = 21 represents a
gap. Similarly define Yref(i) = (Yref(i, 1), . . . , Yref(i, 21))

T for
the reference sequence, and let r(i) denote the amino acid
at position i in the reference sequence. The vector Ykj (i) is
a 21-nomial random variable with response probability vec-
tor pk(i) = (pk(i, 1), . . . , pk(i, 21))T . The maximum likelihood
estimate (MLE) of pk (i) is p̂k(i) = (Ȳk(i, 1), . . . , Ȳk(i, 21))T ,
where Ȳk(i, a) = n−1

k

∑nk

j=1 Ykj(i, a).
The biological significance of a difference in two amino acids

at a position depends on the particular amino acids being
compared (e.g., T versus Y). There is a vast literature on
how to weight the 20 × 19 = 380 different amino acid mis-
matches, by physicochemical or evolutionary properties, and
for problem A our methods incorporate a weight matrix to

reflect such information. Let M be a 21 × 21 matrix with
nonnegative entries, with (a, a′)th element the weight/score
summarizing dissimilarity of amino acids a and a′. The dis-
tance between the amino acid at position i in the jth sequence
of group k to the amino acid at position i in the reference se-
quence is the appropriate element of M, computed as dkj (i) =
Ykj (i)

T MYref(i). The simplest matrix M = J − I, with J the
21 × 21 matrix of ones and I the identity matrix; with this
matrix dkj (i) = 0 (1) if the two amino acids under comparison
are the same (different).

2.2 Two-Sample Test Statistics for Problem B
(No Reference Sequence)

For each position i, test statistics are developed to evalu-
ate HB

0 (i) : p1(i) = p2(i) versus HB
1 (i) : p1(i) �= p2(i). Testing

HB
0 (i) is equivalent to the well-known problem of testing for in-

dependence in a two-way (2 × 21) contingency table. Fisher’s
exact test applies to this problem. However, it may not be
most powerful for sequence data sets collected in practice,
and the simulations verify that some of the new tests provide
greater power than Fisher’s exact test.

Our first three proposed test statistics are based on
summing weighted differences {p̂1(i, a) − p̂2(i, a)}2 over a =
1, . . . , 21, with three different approaches to standardizing/
studentizing the summands. The first two statistics are re-
lated to Wu et al.’s (2001) Euclidean-distance based statis-
tics; the first is unstandardized (a numerator statistic) and the
second divides each summand by its estimated variance. For
high-dimensional data sets with small sample sizes the noise
in variance estimation can erode power, potentially rendering
the simpler numerator statistic more powerful (cf., Pollard
and van der Laan, 2003). Related to Wu et al.’s (2001) Maha-
lanobis distance based statistic, the third “fully standardized”
statistic standardizes using the inverse of a nonparametric
estimate of the 21 × 21 covariance matrix of p̂1(i) − p̂2(i).
Heuristically these three statistics incorporate a hierarchy of
degrees of regularization to dampen noise due to variance-
covariance estimation: the first statistic employs full regular-
ization (no variance estimation), the third statistic employs
no regularization (estimate the entire variance-covariance ma-
trix), and the second statistic employs intermediate regular-
ization (estimate the variances but set all covariances to zero).
For HIV sequence data sets it is unknown which test performs
best, and accordingly our simulations are designed to address
this question.

In addition, we consider a test statistic based on Kullback–
Leibler discrepancy, which is approximately an expected
weighted log-likelihood ratio comparing p̂1(i) and p̂2(i). The
Kullback–Leibler discrepancy has been widely studied and
has well-known optimality properties closely related to those
of likelihood ratio tests (cf., Eguchi and Copas, 2002), which
raises the conjecture that it will provide relatively high power.

For problem B our Euclidian-type statistics are defined by

ZB
E1(i) ≡

21∑
a=1

{p̂1(i, a) − p̂2(i, a)}2 I(v̂(i, a) > 0),

ZB
E2(i) ≡

21∑
a=1

{
(p̂1(i, a) − p̂2(i, a))

/
v̂(i, a)

}2
I(v̂(i, a) > 0),

(1)



Tests for Comparing Amino Acid Sequences 201

where v̂(i, a)2 estimates Var(p̂1(i, a) − p̂2(i, a)):

v̂(i, a)2 =
(n1 − 1)

(n− 2)
V̂ar(p̂1(i, a) +

(n2 − 1)

(n− 2)
V̂ar(p̂2(i, a)),

with V̂ar(p̂k(i, a)) = p̂k(i, a)(1 − p̂k(i, a))/nk, k = 1, 2.
The third statistic is given by

ZB
M (i) ≡ (p̂1(i) − p̂2(i))

T Ŝ−(i)(p̂1(i) − p̂2(i)), (2)

where Ŝ−(i) is the Moore–Penrose generalized inverse of
Ŝ(i) = [(n1 − 1)Ŝ1(i) + (n2 − 1)Ŝ2(i)]/(n− 2). Here Ŝk(i) =
diag(p̂k(i)) − p̂k(i)p̂k(i)T is the multinomial MLE of the 21 ×
21 covariance matrix Sk (i) = diag(pk (i)) − pk (i)pk (i)

T . The
matrix Ŝ−(i) can be computed by the following steps: (i)
Calculate the singular value decomposition of Ŝ(i), Ŝ(i) =
Udiag(d)V T , where U and V are orthogonal matrices and
diag(d) is a diagonal matrix with diagonal vector d; (ii) Set
d∗(a) = I(d(a) > 0)/d(a), a = 1, . . . , 21; and (iii) Set Ŝ−(i) =
V diag(d∗)UT . The statistic ZB

M (i) is the Mahalanobis statistic
that has been used extensively in many applications, although
more commonly for quantitative data, not multinomial data
(cf., Rao and Chakraborty, 1991).

The fourth statistic, based on Kullback–Leibler discrep-
ancy, is relatively easy to compute. For position i, let

ZB
KL(i) ≡

21∑
a=1

I(p̂1(i, a)p̂2(i, a) > 0)p̂1(i, a)log

{
p̂1(i, a)

p̂2(i, a)

}

+

21∑
a=1

I(p̂1(i, a)p̂2(i, a) = 0)

×
(
p̂1(i, a) + n−1

1

)
log

{
p̂1(i, a) + n−1

1

p̂2(i, a) + n−1
2

}
. (3)

Note that the standard Kullback–Leibler discrepancy for com-
paring p̂1(i) and p̂2(i) is

∑21
a=1 p̂1(i, a)log{p̂1(i, a)/p̂2(i, a)}. If

all possible amino acids and the gap character are not rep-
resented in group 2 sequences at position i, then this statis-
tic can equal infinity. Following the suggestion of Wu et al.
(2001), our statistic ZB

KL(i) defined in (3) is modified to keep it
finite.

2.3 Two-Sample Test Statistics for Problem A
(with a Reference Sequence)

To evaluate a type A signature at position i, we develop tests
for HA

0 (i) : p1(i, r(i)) = p2(i, r(i)) versus HA
1 (i) : p1(i, r(i)) �=

p2(i, r(i)), which assesses equal frequencies of the reference
amino acid at position i in the two sequence sets. We base
tests of HA

0 (i) on a comparison of average distances dkj (i) =
Ykj (i)

T MY ref(i) (defined at the end of Section 2.1) between
groups k = 1 and 2, with diag(M) = 0. These averages can be

written as d̄k(i) = n−1
k

∑nk

j=1 dkj(i) =
∑21

a=1M(a, r(i))p̂k(i, a).

Parallel to the type B statistics ZB
E1(i) and ZB

E2(i), we consider
unstandardized and standardized statistics,

ZA
1 (i) ≡ d̄1(i) − d̄2(i),

ZA
2 (i) ≡ {d̄1(i) − d̄2(i)}/s(i), (4)

where s(i) = [{(n1 − 1)/(n− 2)}s2
1(i) + {(n2 − 1)/(n− 2)} ×

s2
2(i)]

1/2, with s2
k(i) the sample variance of dkj(i), j =

1, . . . , nk, for k = 1, 2.

3. Judging Statistical Significance
3.1 Permutation-Based Unadjusted p-values

(Marginal—No Pooling)
To judge statistical significance of the p tests, first nomi-
nal (unadjusted) position-specific p-values are computed. Al-
though analytic p-values can be computed for some of the test
statistics, to avoid the requirement of large sample sizes and
to create a uniform approach for the different statistics, we
use a permutation procedure to determine p-values (except
for Fisher’s exact test for which we use analytic p-values).
Specifically, Bperm data sets, each of n = n1+ n2 sequences,
are generated by independently permuting the group mem-
bership labels of the whole sequences. The p-value for position
i is calculated as the fraction of the test statistics computed
using the Bperm permuted data sets that equal or exceed the
value of the original test statistic in absolute value.

3.2 Nonparametric Estimated Null Distribution-Based
Unadjusted p-values (Pooling)

In the second (pooling) approach to computing position-
specific p-values, slightly modified versions of ZB

Em(i) and
ZA

m (i) are needed, m = 1, 2, as described below. These modi-
fied statistics incorporate a position-specific weight w1(i), i =
1, . . . , p, that can be used to reflect biological information. For
example, positions could be weighted by their conservancy
(a position is relatively conserved if most sequences contain
the same amino acid at the position), because conserved po-
sitions may be more functionally or structurally important
than variable positions. For exploratory analyses, where the
aim is to generate hypotheses about positions that warrant
further biological examination, equal weights w1(i) = 1 may
be recommended, because they prevent subjective biases from
influencing the results, and they may be agreed upon broadly
among investigators. For these reasons equal weights are used
in the Examples.

To develop the pooling approach, we follow Pan’s (2003)
clever idea for how to directly nonparametrically estimate the
null distribution of hundreds of t-statistics. Assume that un-
der all H0(i)’s, the test statistics of interest Z(i) have the same
distribution for i = 1, . . . , p. For each group of sequences sep-
arately, randomly permute the sequences into two (almost)
equally sized pieces, labeled sets Jk1, Jk2, k = 1, 2. Define
nk2 = nk1 if nk = 2nk1 and nk2 = nk1 + 1 otherwise, k = 1, 2.
To evaluate type B signatures, the test statistic ZB

E1(i) of (1)
is modified (slightly) to

ZBsplit
E1 (i) ≡ w1(i)

21∑
a=1

{(p̂11(i, a) + p̂12(i, a))/2 − (p̂21(i, a)

+ p̂22(i, a))/2}2I(v̂(i, a) > 0),

where p̂k1(i, a) = n−1
k1

∑nk

j=1 Ykj(i, a)I(j ∈ Jk1) averages the
Ykj(·) in the first permuted half of sample k and similarly
p̂k2(i, a) averages the Ykj(·) in the second permuted half. The
statistic ZBsplit

E1 (i) approximately equals ZB
E1(i), and motivates

a statistic that estimates its null distribution:

zBsplit
E1 (i) ≡ w1(i)

21∑
a=1

{(p̂11(i, a) − p̂12(i, a))/2 + (p̂21(i, a)

− p̂22(i, a))/2}2I(v̂(i, a) > 0).
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Because the numerator of zBsplit
E1 (i) is the sum of within-sample

differences, its mean is zero, and zBsplit
E1 (i) can be expected

to approximate the null distribution of ZBsplit
E1 (i). Split statis-

tics ZBsplit
E2 (i) and ZBsplit

E2 (i) are formed in the same way, with
v̂1(i, a)

2 + v̂2(i, a)
2 added to the denominator of the summand

of each statistic, where

v̂k(i, a)2 =
(nk1 − 1)

(nk − 2)
V̂ar(p̂k1(i, a) +

(nk2 − 1)

(nk − 2)
V̂ar(p̂k2(i, a)),

with V̂ar(p̂kl(i, a)) = p̂kl(i, a)(1 − p̂kl(i, a))/nkl, k = 1, 2; l =
1, 2.

To obtain p-values, once ZBsplit
Em (i) is computed, each group

of sequences is again separately randomly permuted into
two halves, and ZBsplit

Em (i) is computed. Based on Bperm
split

separate permutations z
Bsplit(b)
Em (i) is computed Bperm

split times,
b = 1, . . . , Bperm

split . For position i the p-value is then pi =
Ni/(B

perm
split × p), where Ni is the number of the test statis-

tics z
Bsplit(b)
Em (i′) that equal or exceed ZBsplit

Em (i), pooling over
i′ = 1, . . . , p and b = 1, . . . , Bperm

split . We also considered a split

version of ZB
M (i); however, because it performed poorly in sim-

ulations we do not discuss it further. A computational ad-
vantage of the split test statistics is that setting Bperm

split = 5
achieves good performance, as verified in the simulations. A
small number of permutations suffice because of the pooling
of information across positions.

For developing split tests of type A signatures, set d̄k1(i) =
n−1

k1

∑nk

j=1 dkj(i)I(j ∈ Jk1) and d̄k2(i) = n−1
k2

∑nk

j=1 dkj(i)I(j ∈
Jk2), k = 1, 2. Define the test statistic

ZAsplit
1 (i) ≡ w1(i)

{
(d̄11(i) + d̄12(i))/2

− (d̄21(i) + d̄22(i))/2
}
.

The null distribution of ZAsplit
1 (i) can be approximated by

zAsplit
1 (i) ≡ w1(i)

{
(d̄11(i) − d̄12(i))/2

+ (d̄21(i) − d̄22(i))/2
}
.

Similar statistics ZAsplit
2 (i) and ZAsplit

2 (i) are formed by plac-
ing (τ̂1(i)

2 + τ̂2(i)
2)1/2 in the denominator of each statistic,

where τ̂k(i)2 = {(nk1 − 1)/(nk − 2)}s2
k1(i) + {(nk2 − 1)/(nk −

2)}s2
k2(i), with s2

kl(i) the sample variance of {dkj(i) : j ∈ Jkl},
for k = 1, 2; l = 1, 2.

Note that the position weights w1(i) affect the p-values be-
cause the pooling method is used; weights placed in front of
the nonsplit statistics described in Section 2 would not affect
the permutation-based p-values, because they are computed
marginally.

We also studied modified versions of the statistics ZB
E2(i),

ZB
M (i), and ZBsplit

E2 (i) that incorporate a small positive constant
in the denominator to stabilize the statistic (see Web Ap-
pendix A). In simulations these tests had lower power than
the tests described above, and therefore are not considered
further.

3.3 Permutation-Based Control of the Per Comparison
Error Rate

We use a permutation-based method that requires no distri-
butional assumptions to estimate the number of false positive

rejections V at some prefixed number. This allows estimating
the per comparison error rate (PCER) by V̂ /p, and the false
discovery rate by I(R > 0)V̂ /R, where R is the number of re-
jections. The estimate V̂ is computed with the following steps:
(1) Construct a permuted data set that satisfies H0(i) for all
i, by permuting whole sequences as described in Section 3.1;
(2) Analyze the permuted data set in the same way as the
real data set, yielding unadjusted p-values for this data set;
(3) For a given fixed p-value threshold pcut, count the num-
ber of rejections, which estimates V; (4) Fine tune the choice
of pcut such that V̂ = V; (5) Reject H0(i) if pi < pcut. The
parameter V can be estimated more precisely by generating
Nnull permuted data sets in Step (1) and estimating V in Step
(3) by the average number of rejections over the Nnull data
sets. In the simulations Nnull = 1 gave good performance.

3.4 Screening Out Highly Conserved Positions
There is little or no power to detect signatures at positions
with very limited amino acid variability. Therefore, highly
conserved positions are prescreened out, based on Tarone’s
(1990) technique for improving power of the Bonferroni cor-
rection for discrete data. Tarone’s (1990) procedure first
screens out hypothesis tests using a simple algorithm, leaving
K ≤ p hypotheses to test, and second rejects the ith hypoth-
esis if the unadjusted p-value pi < α/K. If K < p this method
can provide greater power than the Bonferroni method. The
procedure involves computing a minimum achievable signifi-
cance level α∗

i for each test, calculated from data pooled over
the two groups. Due to the complexity of computing the α∗

i

for each of the new test statistics, for the Simulations and Ex-
amples the α∗

i were computed based on Fisher’s exact test.

4. Simulation Study
4.1 Design of the Simulation Study
The simulation study is designed based on data from the first
HIV vaccine efficacy trial (Flynn et al., 2005) as described
in the introduction. For each of the testing procedures devel-
oped above, plus Fisher’s exact test for comparison, simula-
tions were carried out to address the following questions: (i)
What is the impact of the proportion of positions with a true
alternative hypothesis on the performance of the procedures?
(ii) How much power is there to detect signature positions
for vaccine efficacy trials of different sizes? (iii) How do the
position weights w1(i) influence performance of the split test
statistics? To address these questions, gp120 sequences for the
infected placebo group were simulated by randomly sampling
with replacement n2 = 90 or 180 whole sequences from the 336
sequences. Assuming half as many vaccine recipients got in-
fected as placebo recipients (i.e., vaccine efficacy = 50%), n1 =
45 or 90 sequences were generated for the infected vaccine
group. These sequences were generated in two steps. First,
sequences were sampled in the same way as the placebo se-
quences. Second, an earlier version of the HIV-specific point
accepted mutation (PAM) matrix developed by Nickle et al.
(2007) was used to create amino acid mutations in some of the
vaccine group sequences at the positions i, where the alterna-
tive hypothesis is true. The PAM matrix is 20 × 20, with the
20 amino acids running down the rows and across the columns
(see Web Table 1). Each nondiagonal entry of the PAM ma-
trix corresponds to two different amino acids, and equals the



Tests for Comparing Amino Acid Sequences 203

Figure 2. Average TPRs versus average FPRs for evaluating type B signatures with the alternative hypothesis true for 1%
of positions. (a) and (b) are for trials with 45/90 and 90/180 vaccine/placebo sequences.

estimated probability that either of the amino acids mutates
into the other one, given a specified probability of any muta-
tion at all. The estimated probabilities of amino acid inter-
change were computed based on thousands of observed mu-
tations in HIV sequences (see Web Appendix B). We used
the PAM−25 matrix, which specifies a 25% chance that the
amino acid at position i in a vaccine recipients’ sequence will
be mutated. Independently for each alternative hypothesis po-
sition and each vaccine group sequence, the amino acid was
mutated to one of the 19 other amino acids according to the
probabilities in the PAM-25 matrix.

Question (1) was addressed by setting 1%, 10%, or 25%
of the positions to have true alternatives, which amounts
to 6, 58, or 145 of the 581 positions. We selected the po-
sitions based on previous studies supporting that 39 of the
581 positions are important for HIV neutralization or CD4
coreceptor binding. Specifically, Wyatt et al. (1998) identi-
fied 36 positions that are involved with CD4-binding, are in
CD4-induced epitopes, or that constitute a neutralization epi-
tope defined by the monoclonal antibody 2G12. In addition,
Wei et al. (2003) identified three positions at which amino
acid changes can sterically inhibit the accessibility of princi-
pal neutralizing epitopes on the virus surface: 245, 274, and
309. The positions, here and in the Example, are numbered
using the standard HXB2 strain numbering system (Kuiken
et al., 2002). For the 6 alternative positions, we selected the
positions constituting the monoclonal antibody 2G12 neutral-
ization epitope (295, 297, 334, 386, 392, 397); for the 58 alter-
native positions we selected the 39 key positions considered
above plus 19 randomly sampled positions; and for the 145
alternative positions we used these 58 positions plus 87 more
randomly sampled positions. Question (2) was addressed by

repeating the simulation experiment for small (n1/n2 = 45/90
infections) and large (n1/n2 = 90/180 infections) efficacy tri-
als. Question (3) was addressed by running simulations with
w1(i) = I(H0(i) true) + cI(H0(i) false) with c set as 2.0 or 0.5,
which evaluate the split test statistics when the true alter-
native hypotheses are upweighted twofold (correctly incorpo-
rating prior knowledge) or downweighted twofold (incorrectly
incorporating prior knowledge), respectively.

Except for results reported at the end of Section 4.2, po-
sitions in the split statistics were weighted equally (w1(i) =
1). Tests were carried out at prespecified PCER = 0.01, 0.05,
and 0.10, using Bperm = 1000 permutations to approximate
unadjusted p-values for the nonsplit statistics and Bperm

split =
5 permutations for the split statistics. In Step (1) of the al-
gorithm described in Section 3.3 Bnull = 1 data set is gen-
erated under the complete null hypothesis. The PCER, the
false positive rate (FPR, the percentage of true null positions
rejected), and the true positive rate (TPR, the percentage of
true alternative hypotheses rejected) were estimated by aver-
aging over 250 simulated vaccine trials. The performance of
the tests can be compared by plotting the estimated TPRs
versus FPRs. We also evaluated the PCER because this error
rate can be controlled at a fixed level in applications, whereas
precise control of the FPR is difficult to achieve.

4.2 Simulation Results
For the type B tests, Figures 2–4 show the estimated TPRs
versus FPRs, for the scenarios where 1%, 10%, and 25% of
the alternative hypotheses are true, respectively. We make
several observations. First, the Kullback–Leibler (ZB

KL(i)) and
standardized Euclidean (ZB

E2(i)) statistics are consistently
most powerful. Their power advantage is greatest at low



204 Biometrics, March 2008

False Positive Rate (FPR)

T
ru

e 
P

os
iti

ve
 R

at
e 

(T
P

R
)

0 0.02 0.04 0.06 0.08 0.1 0.12

0.5

0.6

0.7

0.8

0.9

1

(a) 45/90 Vaccine/Placebo Sequences

False Positive Rate (FPR)

T
ru

e 
P

os
iti

ve
 R

at
e 

(T
P

R
)

0 0.02 0.04 0.06 0.08 0.1 0.12

0.5

0.6

0.7

0.8

0.9

1

(b) 90/180 Vaccine/Placebo Sequences

Zsplit_E2 Zsplit_E1

ZB
E1

ZB
E2 ZB

M

ZB
KL

Fisher

Figure 3. Average TPRs versus average FPRs for evaluating type B signatures with the alternative hypothesis true for
10% of positions.
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Figure 4. Average TPRs versus average FPRs for evaluating type B signatures with the alternative hypothesis true for
25% of positions.

FPRs. Second, when FPR ≥ 0.05, the power of ZB
KL(i) and

ZB
E2(i) is almost matched by that of ZB

E1(i) and ZBsplit
E2 (i).

Third, the test based on ZB
M (i) has relatively low power,

especially when 1% of the alternative hypotheses are true.
To explain the poor performance of the Mahalanobis-based

statistic, note that the rank of the estimated covariance ma-
trix Ŝ(i) is often fairly high, which occurs because the gp120
region of HIV is highly variable. Consequently there are
dozens of covariance terms to estimate, but the sample size
is quite limited for doing so. Therefore, we conjecture that
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Figure 5. Histograms of the four type A test statistics for the 349 screened-in positions among the p = 581 HIV gp120
positions sequenced in the VaxGen trial, with equal weighting of all positions and amino acid mismatches. For PCER = 0.01
the statistics ZA

1 (i), ZA
2 (i), ZAsplit

1 (i), and ZAsplit
2 (i) rejected 1, 1, 6, and 6 hypotheses, respectively.

the noise in covariance estimation is causing the poor per-
formance. To support this conjecture, we repeated the sim-
ulations with all covariance estimates set to zero, in which
case the Mahalanobis-based statistic is very similar to the
Euclidean-based statistic ZB

E2(i). With this modification these
two approaches performed similarly.

Fourth, the split statistics with true alternative positions
upweighted have greater TPRs and smaller FPRs than the
equal-weighted methods; for example, with m1/m2 = 45/90,
PCER = 0.05 and 10% of the alternative hypotheses true,
the TPR/FPR of the ZBsplit

E2 (i) tests is 0.94/0.015 compared
to 0.90/0.051 for the unweighted tests. On the other hand
when the true alternative positions were downweighted, the
opposite results attain, with TPR/FPR of 0.74/0.068. These
results provide preliminary “proof of principle” that correct
upweighting of positions can improve performance of the split
test statistics, but incorrect weighting can erode performance.
This suggests that weighting to incorporate biological knowl-
edge should be done with caution. Fifth, most of the estimated
PCERs are close to their prespecified values, showing that the
procedures correctly control the PCER (results not shown).

The four tests for type A signatures were evaluated us-
ing the same simulated data sets. The estimated PCERs are
close to their prespecified values (results not shown). In ad-
dition the tests have comparable TPRs, although the split
tests sometimes outperform or underperform the nonsplit
tests (Web Figure 1). The comparable powers may be ex-
plained by the fact that the type A tests are all variants of
t-statistics.

5. Examples
We now consider the evaluation of type A signature positions
for the data from the efficacy trial described in the introduc-
tion. The matrix M was taken as J − I, or as the reciprocal
of the HIV-specific PAM−250 matrix in Web Table 1, modi-
fied to have zeros on the diagonal and a vector of zeros added
to the 21st row and the 21st column. Because the previously
available amino acid substitution matrices were built using or-
ganisms other than HIV, this PAM may yield more accurate
rates of HIV amino acid interchanges. Taking the reciprocal
upweights rare amino mismatches, which may have greater
biological significance.

The tests were performed using Bperm = 10,000 or Bperm
split =

1000 permutations and Nnull = 1 null data set generated in
Step (1) of the algorithm described in Section 3.3. Tarone’s
(1990) procedure screened out 232 of the 581 amino acid po-
sitions. With w1(·) = 1,M = J − I, and PCER fixed at 0.01,
the cut-off p-value pcut ranged from 0.0009 to 0.0085 for the
four type A test statistics. The statistics rejected 1, 1, 6, and
6 hypotheses (Figure 5). Because 349 positions were analyzed,
3.5 false positives per test statistic are expected. Therefore,
the results are consistent with all of the null hypotheses be-
ing true. This conclusion is supported by the observation that
only one test across all the positions and test statistics is
significant under the Holm–Bonferroni adjustment procedure
applied to control the family-wise error rate at level 0.10 (with
cut-off p-value of 0.00023). Specifically, position 268 had un-
adjusted p = 0.0027, 0.0023, 0.0057, <.0001 for ZA

1 (i), ZA
2 (i),

ZAsplit
1 (i), ZAsplit

2 (i). Similar null results were obtained when M



206 Biometrics, March 2008

was set as the reciprocal PAM matrix. The result of no signa-
ture positions can be explained by the inability of the tested
vaccine to prevent HIV infection. If the vaccine does not im-
pact susceptibility to HIV acquisition, then the distribution
of infecting sequences should be identical in the vaccine and
placebo groups.

To illustrate the tests for evaluating type B signature posi-
tions, 251 gp160 subtype B HIV-1 sequences were downloaded
from the Los Alamos HIV Sequence Database (Kuiken et al.,
2002), 61 known to be CXCR4 coreceptor utilizing viruses
and 192 known to be CCR5 coreceptor utilizing viruses. The
sequences were multiply aligned, with common length p = 857
amino acid positions. Many significant signatures are found by
all of the procedures; for example, with PCER = 0.01, ZB

E2(i)
and ZB

KL(i) yield 67 and 71 significant signature positions out
of 448 screened-in positions, compared to 35 for Fisher’s exact
test.

6. Discussion
For comparing two sets of amino acid sequences, we developed
and evaluated four new testing procedures for detecting type
A signature positions (positions where amino acids have a dif-
ferent probability of mismatch relative to a reference amino
acid) and six new testing procedures for detecting type B sig-
nature positions (positions where amino acids have a differ-
ent frequency distribution, irrespective of a reference amino
acid). For evaluating type B signatures the Kullback–Leibler
statistic ZB

KL(i) and the standardized Euclidean statistic ZB
E2(i)

were most powerful and are recommended. The split statis-
tic ZBsplit

E2 (i) may also be recommended, based on its fairly
good performance and its computational speed, only requir-
ing ≈ 5 permutations. A statistic similar to our ZB

E2(i) was
found to perform well by Wu et al. (2001). We conjecture that
the Euclidean-based statistics provide greater power than the
Mahalanobis-based statistic ZB

M (i) because the latter statis-
tic includes a nonparametric estimate of a large covariance
matrix, introducing considerable noise. The efficiency of the
Kullback–Leibler test likely derives from its similarity to a
likelihood ratio test.

The four t-type statistics developed for evaluating type
A signatures performed comparably in the simulation mod-
els considered. These tests differ from previously developed
t-type tests for large-scale significance testing in that the
data (amino acid distances) are discrete, and the test statis-
tics advantageously incorporate a weight matrix specifying
dissimilarity values for all pairs of different amino acids.
Furthermore, the type A and B split-statistic methods ad-
vantageously incorporate weights on amino acid positions.
These weights allow the techniques to flexibly reflect biologi-
cal knowledge about sequences, and their tailoring to different
applications.

7. Supplementary Materials
Web Appendices, tables, and figures referenced in Sections 3.2
and 4.1 are available under the Paper Information link at the
Biometrics website http://www.biometrics.tibs.org.
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