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SUMMARY

Identification of an immune response to vaccination that reliably predicts protection from clinically
significant infection, i.e. an immunological surrogate endpoint, is a primary goal of vaccine research.
Using this problem of evaluating an immunological surrogate as an illustration, we describe a hierarchy
of three criteria for a valid surrogate endpoint and statistical analysis frameworks for evaluating them.
Based on a placebo-controlled vaccine efficacy trial, the first level entails assessing the correlation of an
immune response with a study endpoint in the study groups, and the second level entails evaluating an
immune response as a surrogate for the study endpoint that can be used for predicting vaccine efficacy
for a setting similar to that of the vaccine trial. We show that baseline covariates, innovative study design,
and a potential outcomes formulation can be helpful for this assessment. The third level entails validation
of a surrogate endpoint via meta-analysis, where the goal is to evaluate how well the immune response
can be used to predict vaccine efficacy for new settings (building bridges). A simulated vaccine trial and
two example vaccine trials are presented, one supporting that certain anti-influenza antibody levels are an
excellent surrogate for influenza illness and another supporting that certain anti-HIV antibody levels are
not useful as a surrogate for HIV infection. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Identification of a vaccine-induced immune response that predicts whether vaccine recipients will
be protected from disease with a pathogen (i.e. an ‘immune correlate’) is a primary goal of vaccine
research [1–3]. Owing to resource limitations, large clinical trials that provide direct estimates
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of vaccine efficacy can be done only over a limited spectrum of settings (geographic regions,
genetics of human populations and pathogen populations, vaccine formulations, etc.). Therefore,
the availability of an immune correlate would allow prediction of vaccine efficacy for new settings
where direct data on vaccine efficacy are not available.

Despite the long history of searching for immune correlates and the consensus on the importance
of finding them (e.g. it is one of the 14 ‘Grand Challenges of Global Health’ of the NIH and Gates
Foundation), there is only a small statistical literature for their evaluation [4–6]. Furthermore,
three different conceptual definitions of immune correlates have been implicitly used, which has
led to confusion about what exactly is assessable in vaccine trials. The three definitions of immune
correlate form a hierarchy in the amount of information that is needed to evaluate them and in
the strength of empirical validation for forming a basis for reliably predicting vaccine efficacy in
new settings. The extensive statistical literature on the evaluation of surrogate endpoints suggests
ways to evaluate the three kinds of immune correlates (reviewed in [7]), and in a companion
clinical paper we summarized an approach for ‘technology transfer’ of some of these methods
to evaluating the three kinds of immune correlates [8]. This article describes in greater statistical
detail our approach to applying certain surrogate endpoint evaluation methods to the assessment of
immune correlates and expands on new methodology for evaluating a level 1 surrogate endpoint.

2. THREE TIERS OF AN IMMUNOLOGICAL SURROGATE ENDPOINT

For concreteness we assume a randomized placebo-controlled vaccine efficacy trial, with the
immune response of interest S measured at fixed time t0 after randomization. Let Y be the study
endpoint (e.g. clinically significant disease) and Z be the vaccination status (Z =1, vaccine; Z =0,
placebo).

Table I defines the three kinds of immune correlates, which we refer to as a correlate of risk
(CoR), a surrogate of protection (SoP) at validation level 1, and a SoP at validation level 2. Level 1
validation entails evaluating the reliability of the biomarker for predicting vaccine efficacy for the
same setting as the trial, while the higher level 2 validation evaluates reliability for predicting
vaccine efficacy across different settings (building bridges).

2.1. Correlate of risk (CoR)

A CoR is simply an immune response that is correlated with the rate or level of a study endpoint
that is relevant to pathogen-specific disease (i.e. S is a CoR if it correlates with Y ). A CoR can
be assessed in epidemiological studies or in preventive vaccine efficacy or proof-of-concept trials.
In efficacy and proof-of-concept trials, interest centers on assessing CoRs for the primary study
endpoint within each randomized study group. Examples of primary endpoints in vaccine trials
are (i) acute hepatitis illness with detection of positive hepatitis B surface antigens [9]; (ii) severe
diarrheal illness with rotavirus [10] or Vibrio cholerae [11] isolated in stool; and (iii) cervical
infection with type 16 or 18 human papillomavirus [12]. Although identifying CoRs for true
clinical endpoints may be of greatest interest, it is also sometimes of interest to identify CoRs
for biomarker study endpoints; for example, an objective of current vaccine efficacy trials of a T
cell-based HIV vaccine is the evaluation of potential CoRs for set-point viral load [13].

Substantial variability of an immunological measurement among sampled individuals is neces-
sary to evaluate the measurement as a CoR. We distinguish two types of putative CoRs, those
that vary in both the vaccine and placebo arms of the trial, and those that have no or very limited
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Table I. Definitions of three levels of an immunological correlate of protection.

Term Definition
Framework for
assessment

Analytic
method

CoR (Correlate of
risk)

An immunological measurement S that
correlates with the study endpoint Y
measuring vaccine efficacy in a defined
population

Vaccine trial (efficacy
or proof of concept)
or epidemiological
study

Regression
models

Level 1 (specific)
SoP (Surrogate of
protection for the
same setting)

An immunological measurement that is a
CoR within a defined population of vaccine
recipients and satisfies either:

SoPS (Statistical
surrogate of
protection for the
same setting)

The relationship between the immunological
measurement S and endpoint Y is the same
in the vaccine and placebo groups
(Y |S=s, Z =1=d Y |S=s, Z =0 for all s)

Single large efficacy
trial

Statistical
surrogate
framework

SoPP (Principal
surrogate of
protection for the
same setting)

The immune response S satisfies average
causal necessity and average causal
sufficiency defined in Section 2.2

Single large efficacy
trial

Principal
surrogate
framework

Level 2 (general)
SoP (Surrogate of
protection for new
setting)

An immunological measurement that is
predictive of vaccine efficacy in different
settings (e.g. across human populations,
viral populations, vaccine formulations)

Multiple trials
(efficacy or proof of
concept) and/or
post-licensure studies

Meta-
analysis

variability in the placebo arm. If many of the trial participants have been infected with the pathogen
under investigation prior to enrolling into the trial (as for influenza vaccine trials), then the former
case likely prevails. However, if trial participants have never been infected with the pathogen (as
in HIV and human papillomavirus vaccine trials), then most or all placebo recipients will have no
immune response, because the immune response is pathogen specific. If there is variability of the
immune response in the placebo arm, then a potentially useful measure of the strength of CoR
is the adjusted association [14], which measures the correlation between the biomarker and the
clinical endpoint, adjusting for vaccination status. If there is no variability of S in the placebo arm,
then standard measures of correlation within the vaccine arm can be used, such as the relative risk
or parameters that account for the distribution of the biomarker in the population [15]. The type
of immunological biomarker influences the pros and cons of the frameworks considered below for
evaluating SoPs.

Identifying biomarkers as CoRs is a ubiquitous objective in epidemiological studies and clinical
trials for many diseases, and for many surrogate evaluation methods the first step is to evaluate a
biomarker as a CoR. Discovering that a biomarker is a CoR may raise the hypothesis that it has
some value as a surrogate endpoint.

2.2. Level 1 SoP

An SoP is a CoR such that contrasts in the immune response in the vaccine and placebo groups of
an efficacy trial reliably predict the level of vaccine efficacy against a study endpoint. Level 1 or 2
refers to what can be reliably predicted—level 1 refers to reliable prediction for the same setting
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as studied in the efficacy trial, while level 2 refers to reliable prediction across different settings.
As emphasized in the statistical literature, there are a number of ways in which a CoR can fail
to be a level 1 SoP; for example, if the vaccine impacts the study endpoint through a mechanism
that does not involve the CoR [16–18].

Two main frameworks have been employed in the statistical literature for evaluating a level 1
surrogate endpoint based on one large clinical trial, which directly apply for evaluating a level
1 SoP. The first approach evaluates whether the CoR approximately satisfies the Prentice [19]
definition of a surrogate endpoint; a variety of criteria have been used to evaluate consistency with
the Prentice definition. These methods base the assessment on the statistical associations observable
in the trial, and hence we refer to this type of SoP as a statistical SoP. The main criterion of several
methods taking this approach is that the observed vaccine efficacy is ‘completely explained’ in a
statistical model by the immunological measurements, or in other words, the effect of the vaccine
on the study endpoint is fully mediated through the biomarker.

A second approach for assessing a level 1 SoP, still in its early development, is based on the
potential outcomes framework of causal inference [20, 21]. Within this framework, proposed by
Frangakis and Rubin [22] with related ideas found in Robins [23], each trial participant has a
potential immune response Si (Z) if assigned vaccine (Z =1) and if assigned placebo (Z =0)
as well as potential study endpoints Yi (Z), for Z =0,1. Furthermore, let Vi (Z) be the potential
indicator of whether the i th subject has not yet had the endpoint Yi (Z)=1 by the time t0 that
the immune response is measured. For subjects in arm Z , S= S(Z) and Y =Y (Z) are observed,
whereas S(1−Z) and Y (1−Z) are counterfactuals. With this notation we have implicitly assumed
the following.

A1: Stable Unit Treatment Values (SUTVA) [24]. SUTVA implies that for each subject i the
potential outcomes (Si (1), Si (0),Yi (1),Yi (0)) are unaffected by the treatment assignments Z j of
other subjects. We also assume the following throughout.

A2: Ignorable treatment assignments. This states that the (Vi (1),Vi (0), Si (1), Si (0),Yi (1),Yi (0))
are independent of the treatment assignment Zi . A2 holds in randomized and placebo-controlled
trials with integrity of randomization and blinding. Note that in the absence of measurement error
in the immunological assay, Si (1)�Si (0) will often hold.

The causal vaccine efficacy to prevent disease Y =1 can be defined as [25, 26]

VE≡1− Pr(Y (1)=1)

Pr(Y (0)=1)

Under A1 and A2, VE=1−Pr(Y =1|Z =1)/Pr(Y =1|Z =0), identifying VE from the observed
data. A causal estimand for measuring the surrogate value of a biomarker can be defined similar
to VE by conditioning on the joint potential outcomes (S(1), S(0)), as we now describe.

Frangakis and Rubin [22] gave a definition of a principal surrogate endpoint, and Gilbert and
Hudgens [27] suggested a modified definition that we employ here. For fixed levels s1 of S(1) and
s0 of S(0), define

risk(1)(s1,s0)≡Pr(Y (1)=1|V (1)=1,V (0)=1, S(1)=s1, S(0)=s0)

and

risk(0)(s1,s0)≡Pr(Y (0)=1|V (1)=1,V (0)=1, S(1)=s1, S(0)=s0)

These risks condition on V (1)=V (0)=1 because the potential immune responses S(1) and S(0)
are both defined only in this subpopulation. A contrast in risk(1)(s1,s0) and risk(0)(s1,s0) measures
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a population level or average causal effect on Y for subjects with {Vi (1)=Vi (0)=1, Si (1)=
s1, Si (0)=s0}. In particular, we consider the causal estimand

VE(s1,s0)≡1− risk(1)(s1,s0)

risk(0)(s1,s0)
(1)

If the immune response S is measured near baseline, then VE is related to VE(s1,s0) as follows:

VE= 1− Pr(Y (1)=1)

Pr(Y (0)=1)

≈ 1− Pr(Y (1)=1|V (1)=V (0)=1)

Pr(Y (0)=1|V (1)=V (0)=1)

= 1− E[risk(1)(S(1), S(0))]
E[risk(0)(S(1), S(0))]

where the expectations are with respect to the joint distribution of (S(1), S(0)). Henceforth, all
probabilities involving (S(1), S(0)) are implicitly assumed to condition on V (1)=V (0)=1.

Gilbert and Hudgens [27] defined a principal surrogate (i.e. a principal SoP) as a biomarker
satisfying the following two conditions:

Average causal necessity: VE(s1,s0)=0 if s1=s0.
Average causal sufficiency: VE(s1,s0)>0 for all s1> a constant C�s0.
Average causal necessity states that a positive vaccine effect on the immune response is necessary

for protection while average causal sufficiency states that a large enough vaccine effect on the
immune response is sufficient for protection. A reviewer helpfully pointed out that the choice of
constants 0 and C�s0 for defining necessity and sufficiency depends on a subtle assumption about
the meaning of S(1) and S(0). To explain this, note that S(1) and S(0) are measured using the
identical assay and target antigen, but S(0) measures the pre-existing/natural immune response
whereas S(1) measures this immune response inseparably combined with any immune response
generated by the vaccine. Thus, for example, S(1) may measure ‘fresh’ antibodies newly generated
by the vaccine, whereas S(0) measures older pre-existing antibodies. Consequently, even if the
immune response is fully mechanistically causative of protection, VE(s1,s1) may exceed zero (and
hence average causal necessity fails) because ‘fresher’ vaccine-induced memory B cells proliferate
better than older memory B cells. In this case, the average causal necessity criterion may be
misleading, and the surrogate evaluation could instead be based on the whole surface VE(s1,s0).
Indeed, in the presence of the subtle interpretation of (S(1), S(0)), the extent to which VE(s1,s0)
increases with s1−s0 should generally provide meaningful quantification of surrogate value.

While we do not require it in the definition, often a good surrogate will satisfy the condition
that vaccine protection does not get worse with greater vaccine effects on the immune response:

Monotone VE: VE(s1,s0) is monotone nondecreasing in s1−s0.
While it may be useful to check the three properties given above, we stress that it is most useful

to examine the whole surface VE(s1,s0) to provide full information on the predictive value of a
biomarker as a surrogate endpoint. To reinforce the importance of this, consider that average causal
necessity and sufficiency may hold yet VE(s1,s0)<0 for s0<s1�C . This scenario is plausible for
various pathogens due to the theoretical possibility that low levels of immune response enhance
disease while high levels protect; respiratory syncytial virus and dengue illustrate this potential
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phenomenon [28, 29]. Estimating the whole surface VE(s1,s0) would provide a way to discover
this phenomenon, whereas only checking necessity and sufficiency could not identify it.

For the case that S does not vary in the placebo arm (such that Si (0)=c for all i , with
c=0 without loss of generality), the causal estimand is a curve VE(s1,0). This curve at s1 has
interpretation as the per cent reduction in risk for a vaccinated subpopulation with immune response
s1 compared with if it had not been vaccinated. The more the curve VE(s1,0) increases in s1
the greater the capacity of the biomarker to predict vaccine efficacy; thus, even if average causal
necessity and sufficiency fail, a CoR may still be useful as an SoP if the curve substantially
increases in s1.

For the general case that S may vary in the placebo arm, a marginal causal estimand of interest
is

mVE(s1)≡1− risk(1)(s1)

risk(0)(s1)
(2)

where risk(Z)(s1)≡Pr(Y (Z)=1|V (1)=1, S(1)=s1)=E[risk(Z)(s1, S(0))|V (1)=1, S(1)=s1], for
Z =0,1. In this estimand the risks under each vaccination assignment average over the conditional
cdf of S(0) given S(1)=s1. The estimand mVE(s1) is causal because the two risks involved condi-
tion on the union of basic principal strata,

⋃
s0

{S(1)=s1, S(0)=s0}. Value of the biomarker to
predict vaccine efficacy is indicated by mVE(s1) increasing in s1. In the case that Si (0) is constant
at zero, the marginal estimand (obviously) collapses to the joint estimand: mVE(s1)=VE(s1,0).

2.2.1. More on the interpretation of the two estimands VE(s1,s0) and mVE(s1). The estimand
VE(s1,s0) has a clear interpretation for measuring surrogate value, capturing the association
between causal vaccine effects on the immune response and causal vaccine effects on the disease
endpoint. However, this estimand is complicated by the fact that (S(1), S(0)) has an unobservable
bivariate distribution, and VE(s1,s0) is only meaningful/defined for points (s1,s0) in the support of
(S(1), S(0)). Therefore, knowledge and/or assumptions about the joint distribution of (S(1), S(0))
are needed for determining the region over which VE(s1,s0) is estimated. With [l1,u1] the range
of observed S’s for Z =1 subjects and [l0,u0] the range of observed S’s for Z =0 subjects, for
some applications it will be reasonable to restrict consideration to the region

{(s1,s0) :s1∈[l1,u1],s0∈[l0,u0],s1�s0}
In contrast, the causal estimand mVE(s1) is simpler, only having one argument, but because it

does not condition on both S(1) and S(0), in general it does not reflect the relationship between
causal biomarker effects and causal clinical effects. Therefore, in general, mVE(s1) does not
measure principal surrogate value. Under A1 and A2, mVE(s1) has interpretation as the per cent
reduction in risk for a vaccinated subpopulation with immune response s1 compared with if it
had not been vaccinated. As such this marginal estimand may be used for predicting the level
of causal vaccine efficacy for vaccinated groups with different immunogenicity levels, and the
comparison of mVE(s1) and mVE(s′

1) for s1 �=s′
1 quantifies the difference in protection that is

expected given different immune response levels. Furthermore, for placebo-controlled trials for
which Si (0) has much less variability than Si (1), s1>s′

1 for S(1) approximately corresponds to a
s1−s′

1 greater causal vaccine effect on the immune response. In this case mVE(s1) approximately
measures principal surrogate value, with interpretation similar to VE(s1,s0).
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2.3. Evaluation of a statistical SoP

There are major challenges for assessing level 1 SoPs within either the statistical or principal
surrogate frameworks, as we now address in turn.

It is well known that statistical SoPs are difficult to validate [16–19, 30, 31], with a reasonably
precise direct validation requiring a very large efficacy trial, usually much larger than typical
Phase 3 trials conducted in practice. Furthermore, a larger sample size is needed to quantitate
the surrogate value of a partially predictive level 1 SoP than for identifying a nearly ‘perfect’
level 1 surrogate. An approach to evaluating a level 1 statistical SoP can be broken down into two
requirements: First, that the biomarker is a ‘strong’ CoR in each of the vaccine and placebo arms,
and second, after controlling for the biomarker in a regression model, vaccination status does not
predict the study endpoint. These criteria can only be evaluated directly if the immune responses
vary in the placebo arm, because otherwise it is not possible to evaluate the biomarker as a CoR in
the placebo arm, and it is conceptually challenging to check the second ‘full mediation’ condition.

As pointed out by Frangakis and Rubin [22], a drawback of the statistical surrogate framework
is that checking the full mediation condition entails checking equality of the observed risks
of Y =1 for vaccine versus placebo recipients with the same observed biomarker value S=s.
Because the immune response is measured after randomization, this comparison is susceptible
to post-randomization selection bias. Such comparator groups may differ in their host genetics
or other factors, so that observed differences cannot be attributed to vaccine assignment. For
example, in a controlled experiment someone who has S=3 without vaccination may have more
exposures and/or a weaker immune system than someone with no prior exposure who achieves
S=3 following vaccination. The implication is that a perfectly validated statistical SoP could
potentially provide inaccurate predictions of vaccine efficacy, and vice versa, a biomarker with
departures from the statistical SoP criteria could be a good predictor. To address this limitation,
Frangakis and Rubin [22] proposed an alternative principal surrogate framework for evaluating
surrogates, for which the estimand is a causal effect (e.g. the VE(s1,s0) estimand defined at (1),
as addressed further below).

2.3.1. Correcting for selection bias in the statistical SoP definition through baseline covariates.
Based on the above discussion, an estimand that could be used for assessing a validated CoR as
a statistical surrogate is

VES(s)=1− Pr(Y =1|S=s, Z =1)

Pr(Y =1|S=s, Z =0)

where VES(s)=0 for all fixed s indicates a statistical surrogate. Incorporating sufficient baseline
covariates can make this net effect estimand equal to the causal effect estimand VE(s1,s0). With
Pr(Y (1)=1|S(1)=s, x) the probability of Y (1)=1 conditional on S(1)=s and baseline covariates
x , the needed assumption (plus A1–A2) is as follows.

Assumption B1
For all fixed s, the risk ratio risk(1)(s,s, x)/risk(0)(s,s, x)≡Pr(Y (1)=1|S(1)=s, S(0)=
s, x)/Pr(Y (0)=1|S(1)=s, S(0)=s, x) equals Pr(Y (1)=1|S(1)=s, x)/Pr(Y (0)=1|S(0)=s, x).

Under A1 and A2, assumption B1 is equivalent to VES(s, x)=VE(s,s, x)≡1−risk(1)(s,s, x)/
risk(0)(s,s, x), such that after controlling for X the vaccine and placebo groups with observed S=s
have the same distribution of risk factors for Y , and differences in risk between {S=s, Z =1, X = x}
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and {S=s, Z =0, X = x} are attributable to assignment to vaccine. Although B1 is untestable, it
may be plausible in trials for which there is an excellent understanding of the biology of the
pathogen and tested vaccine, and the risk factor covariates X are judiciously selected and collected.

2.4. Evaluation of a principal SoP

Before describing approaches to evaluating a level 1 principal SoP, we compare the interpretations
of principal and statistical surrogates with a simple example. Consider a placebo-controlled vaccine
trial where Y is infection and S is binary, taking values positive or negative immune response
(vaccine ‘take’ or not). We suppose Si (0)=0 for all i . The top half of Table II presents a perfect
principal surrogate, wherein subjects in the ‘not take’ principal stratum have a 30 per cent chance of

Table II. Example illustrating a principal versus statistical surrogate, S binary with Si (0)=0 for all i .

Unknowable truth

Perfect principal surrogate but not a statistical surrogate∗
Principal Fraction Pr(Y (1)=1| Pr(Y (0)=1|
stratum (PS) (S(1), S(0)) in PS S(1), S(0)) S(1), S(0))
Vaccine not take (0,0) 1

3 0.3 0.3

Vaccine take (1,0) 2
3 0.0 0.15

Observable data: infection rates (proportion of volunteers)
Vaccine status

S Z =1 Z =0

0 0.3 ( 13 ) 0.2 (1)

1 0.0 ( 23 ) — (0)

∗VE=1−[( 13 )×0.3+( 23 )×0.0]/[( 13 )×0.3+( 23 )×0.15]=0.5; Pr(Y =1|S=0, Z =1)=(1)×0.3=0.3; Pr(Y =
1|S=0, Z =0)=( 13 )×0.3+( 23 )×0.15=0.2; VE(0,0)=1−0.3/0.3=0.0; VE(1,0)=1−0.0/0.15=1.0.

Unknowable truth

No value as a principal surrogate but a statistical surrogate†
Principal Fraction Pr(Y (1)=1| Pr(Y (0)=1|
stratum (PS) (S(1), S(0)) in PS S(1), S(0)) S(1), S(0))
Vaccine not take (0,0) 1

3 0.2 0.4

Vaccine take (1,0) 2
3 0.05 0.1

Observable data: infection rates (proportion of volunteers)
Vaccine status

S Z =1 Z =0

0 0.2 ( 13 ) 0.2 (1)

1 0.05 ( 23 ) — (0)

†VE=1−[( 13 )×0.2+( 23 )×0.05]/[( 13 )×0.4+( 23 )×0.1]=0.5; Pr(Y =1|S=0, Z =1)=(1)×0.2=0.2; Pr(Y =
1|S=0, Z =0)=( 13 )×0.4+( 23 )×0.1=0.2; VE(0,0)=1−0.2/0.4=0.5; VE(1,0)=1−0.05/0.1=0.5.
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becoming infected under either assignment vaccine or placebo (0 per cent protection), and subjects
in the ‘take’ stratum have a 0 per cent chance of becoming infected under vaccine assignment and
a 15 per cent chance under placebo assignment (100 per cent protection). Therefore, the vaccine
effect on the immune response predicts perfectly whether a subject is protected, and S is a perfect
principal surrogate. However, S is not a statistical surrogate, because for subjects with Si =0, the
probabilities of infection Pr(Y =1|S=0, Z = z) for vaccine and placebo recipients are unequal (0.3
for Z =1 and 0.2 for Z =0). Thus, the definition of a statistical surrogate misses the predictive
capacity of S (a ‘false negative’). The bottom half of Table II presents a scenario where the vaccine
efficacy is the same irrespective of the vaccine effect on the immune response yet is a statistical
surrogate (a ‘false positive’).

The statistical surrogate definition fails in these cases because of the causal vaccine effect on
S, with 67 per cent versus 0 per cent responders in the vaccine versus placebo arms, and the large
amount of selection bias that is reflected in the net effect. This bias could arise because vaccine
recipients who fail to mount an immune response have relatively weak immune systems, placing
them at relatively high risk for infection.

While the principal SoP definition advantageously is based on causal effects, the relevant
estimand VE(s1,s0) is not identified under the standard assumptions A1 and A2, because we
see either (Si (1),Yi (1)) or (Si (0),Yi (0)) but not both. The identifiability problem is partially
ameliorated in the case that S does not vary in the placebo group, because then Si (0) is known for
all subjects, and only the Si (1)’s for placebo subjects must be predicted to achieve identifiability.
Similarly, prediction of the Si (1)’s for placebo recipients will suffice to identify the marginal
estimand mVE(s1) in the general case that Si (0) has arbitrary variability. We consider identifiability
of VE(s1,0) (=mVE(s1)).

2.4.1. Identifiability of VE(s1,0) (Equivalently of mVE(s1)). To identify VE(s1,0), assumptions
beyond A1 and A2 are needed. Gilbert and Hudgens [27] considered the following assumption.

A3: Vi (1)=1 if and only if Vi (0)=1, which states that any individual who did not experience
the event Y =1 by t0 would also not have experienced it by t0 had they received the opposite
randomization assignment. Together A1–A3 identify risk(1)(s1,0) as Pr(Y =1|S=s1, Z =1), which
can be directly estimated in the CoR evaluation. A1–A3 do not identify the remaining piece of
VE(s1,0), risk(0)(s1,0), but do allow simplifying it to

risk(0)(s1,0)=Pr(Y =1|S(1)=s1, S(0)=0, Z =0) (3)

We consider different assumptions, innovative study designs, and data collection techniques that
can be used to identify risk(0)(s1,0) and hence VE(s1,0).

2.4.2. Identifying VE(s1,0) through baseline covariates. In observational studies, typically all
known risk factors are included in the analysis, and causal effects of interest are identified under a no
unmeasured confounders assumption, together with a correctly specified model of outcome or treat-
ment conditional on observed covariates (see for example [32]). In an analogous way, incorporating
comprehensive baseline prognostic factors for the study endpoint can identify risk(0)(s1,0, x)≡
Pr(Y (0)=1|S(1)=s1, S(0)=0, x). In particular, assumption B2 defined as follows (in addition to
A1–A3) implies that risk(0)(s1,0, x) is identified by Pr(Y =1|Z =0, x).

Assumption B2: Pr(Y (0)=1|S(1)=s1, S(0)=0, x)=Pr(Y (0)=1|S(0)=0, x).
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B2 states that within levels of X , S(1) does not predict Y (0). In other words, conditional on
baseline covariates, knowledge of the immune response to vaccine would not help predict the
clinical endpoint for placebo recipients.

A1–A3 plus B2 imply that a CoR will automatically have some value as a level 1 prin-
cipal SoP (i.e. VE(s1,0) increases with s1). This follows by noting that Pr(Y =1|S=s1, Z =
1, x)/Pr(Y =1|S=s′

1, Z =1, x), which measures S as a CoR in the vaccine arm, equals
[risk(1)(s1,0, x)/risk(0)(s1,0, x)]/[risk(1)(s′

1,0, x)/risk(0)(s′
1,0, x)], which measures S as a prin-

cipal SoP. This relationship can be expressed as

Pr(Y =1|S=s1, Z =1, x)

Pr(Y =1|S=s′
1, Z =1, x)

= 1−VE(s1,0, x)

1−VE(s′
1,0, x)

so that the relative risk of infection in the vaccine arm per 1-unit difference in S(1) equals the ratio
of one minus causal VE’s for a 1-unit difference in S(1). Therefore, demonstrating a CoR will
demonstrate a biomarker’s value as a principal SoP if sufficient risk factors are collected to justify
B2. However, B2 is a (very) strong untestable assumption, and we are not aware of any examples
where it is thought to hold. The requirement of such a bold presumption to make the first tier CoR
assessment provide a direct inference about surrogacy reinforces the point that a correlate does
not a surrogate make [17], and explicit SoP evaluations at levels 1 and 2 are necessary.

2.4.3. Identifying VE(s1,0) through baseline predictors and/or close-out placebo vaccination.
Given an unwillingness to assume B2, one approach to identifying VE(s1,0) is to collect additional
data that can be used to predict the S(1)’s of placebo recipients. Follmann [33] introduced two
approaches to predicting S(1). The baseline irrelevant predictor (BIP) approach incorporates a
baseline variable that is measured in both the vaccine and placebo groups that correlates with
S(1) and does not predict clinical risk (i.e. is ‘irrelevant’) after accounting for S(1) and baseline
covariates; and the closeout placebo vaccination approach vaccinates uninfected placebo recipients
at the end of the trial, and measures their immune response S(1) to vaccine. Statistical methods have
been developed for making inferences on VE(s1,0) that use either or both of these approaches, or
variant approaches that drop the irrelevancy condition, and simulation studies have demonstrated
their use [27, 33, 34]. The ‘irrelevant’ condition is a strong assumption, as it implies there are no
unmeasured ‘common causes’ of S and Y in the sense of [35]. This condition will be more plausible
if baseline covariates known to predict S and/or Y are included in the surrogate evaluation.

3. EXAMPLES OF THE EVALUATION OF A CoR AND A LEVEL 1 SoP

3.1. 1998–2003 HIV vaccine efficacy trial

The first placebo-controlled HIV vaccine efficacy trial showed that the tested monomeric recom-
binant glycoprotein 120 vaccine did not protect against HIV infection [36]. However, levels of
certain in vitro antibody measurements significantly inversely correlated with the hazard rate of
HIV infection in the vaccine arm, i.e. were identified as CoRs of the primary study endpoint.
This result was detected using a Cox model and a case-cohort sampling design, wherein antibody
responses were measured for all infected vaccine recipients and for a 5 per cent simple random
sample of uninfected vaccine recipients [37–39].
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Based on this result, questions were raised about whether vaccine recipients with higher antibody
levels were more likely to be protected than vaccine recipients with lower antibody levels, or, in
our parlance, whether the antibody levels have value as a level 1 SoP. Based on the data available
in the trial alone, it is not possible to empirically evaluate an SoP. This is the case for a statistical
SoP because almost all placebo recipients had no antibody response and for a principal SoP
because there are insufficient knowledge and covariate data to warrant making assumption B2,
and no information is available for predicting the immune response to vaccine S(1) for placebo
recipients. This illustrates the common situation, apparently under-recognized in the vaccine field,
that a standard efficacy trial design only permits evaluation of the ‘mere correlation’ CoR level of
an immunological correlate of protection.

However, biological knowledge and a follow-up study generated information supporting that the
CoR had no value as an SoP. Specifically, 28 HIV pseudo-viruses were created from blood samples
of 28 participants who acquired HIV infection during the vaccine trial (14 each from the vaccine
and placebo groups), and the pre-infection sera of 85 randomly sampled vaccine recipients were
evaluated for their ability to neutralize each of the 28 HIV pseudo-viruses. The vaccinee sera did
not generate antibodies that significantly neutralized any of the HIV strains. Since vaccinologists
know that induction of antibodies that neutralize the exposing virus are most likely necessary for
protection, this follow-up study supports that the neutralizing antibody levels are not able to predict
vaccine efficacy and therefore are not a level 1 SoP. This example illustrates the role of biological
knowledge for evaluating an SoP; in this case it could not be evaluated from the available trial
data alone.

3.2. 1942–1943 influenza vaccine efficacy trial

For our second example, a level 1 SoP can be evaluated because the immune response of interest
has substantial variability in the placebo arm and there is a means for predicting missing immune
responses S(1) of placebo recipients. The published data are from a 1942–1943 influenza vaccine
trial in which 1776 men were arranged alphabetically and inoculated alternately with placebo or
a vaccine containing the three flu strains Weiss type A, PR8 type A, and Lee type B [40]. The
primary endpoint was hospitalization with strain-specific influenza isolated in throat culture. We
first evaluate the antibody titers for Weiss strain A and for PR8 strain A as potential CoRs for
hospitalization with strain-specific influenza infection. Figure 1 shows distributions of the log2
strain-specific antibody titers and Figure 2 shows the rates of strain-specific infection by antibody
titer. Figure 2 suggests that both Weiss Strain A antibody titers and PR8 Strain A antibody titers
are CoRs for infection in both study groups, with Weiss Strain A titers being a stronger CoR.
Results from logistic regression models support these results (Table III).

Next we evaluate the strain-specific antibody titers as potential level 1 statistical SoPs. Based
on incidence rates the estimated vaccine efficacy against hospitalization with Weiss strain A is
1−0.225/0.845=0.73 (95 per cent CI 0.57–0.84) and against hospitalization with PR8 strain
A is 1−0.225/0.822=0.73 (95 per cent CI 0.55–0.83). To evaluate potential statistical SoPs,
logistic regression models were fit with independent variables vaccination status and strain-specific
antibody titer, and the observed and predicted strain-specific case incidences by antibody titer
were plotted (Figure 2). For Weiss Strain A, vaccination status has a coefficient estimate near
zero in the model after controlling for antibody titer (Table III), suggesting that the antibody titer
mediates much of the vaccine effect on incidence. Figure 2 shows nearly identical incidence curves
as a function of antibody titer in the vaccine and placebo groups, supporting that Weiss Strain A
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Figure 1. Frequency distributions of anti-Weiss Strain A ((a) placebo and (b) vaccine)
and anti-PR8 Strain A ((c) placebo and (d) vaccine) antibody levels for the placebo and

vaccine study groups of the influenza vaccine field trial.

antibody levels (nearly) completely explain the observed protection. Based on the model relating
case incidence to Weiss strain A titers in the placebo group and the observed titer distribution in
vaccinees, the predicted vaccine efficacy based on Weiss strain A titers is 0.82, close to the vaccine
efficacy estimate computed ignoring the biomarker, 0.73. It is notable that this is one of the first
examples of a biomarker that has been empirically validated to satisfy the Prentice criteria as a
‘perfect’ surrogate endpoint.
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Figure 2. Nonparametric and parametric (logistic regression model based) estimates of
the incidence of hospitalization with Weiss Strain A (a) or PR8 Strain A (b) influenza

infection for the placebo and vaccine study groups.

Table III. Logistic regression models of strain-specific log2-neutralizing antibody titers as a
predictor of hospitalization with strain-specific influenza infection.

Weiss Strain A PR8 Strain A

Coef. est. (s.e.) p-Value Coef. est. (s.e.) p-Value

Intercept 1.62 (0.45) 0.0003 −1.27 (0.53) 0.017
Log2 antibody titer −0.98 (0.12) <0.0001 −0.29 (0.13) 0.031
Vaccination status −0.33 (0.32) 0.31 −0.89 (0.34) 0.0085

In contrast, the analysis suggests that PR8 strain A titers only partially mediate the vaccine
efficacy, as evidenced by the facts that vaccination status is significant in the logistic regression
model that includes PR8 Strain A-specific antibody titer, and the case incidence curves are visibly
different for the vaccine and placebo groups (Figure 2(b)). Furthermore, the predicted vaccine
efficacy based on PR8 strain A titers is 0.33 compared with the estimate 0.73 computed ignoring
the titers. Apparently, the vaccine protects against PR8 strain A through mechanisms that are not
fully captured in the PR8 strain A neutralization assay.

To evaluate the strain-specific antibody titers as potential level 1 principal SoPs, we consider
the data suggesting that pre-vaccination anti-flu antibody titers in adults are inversely correlated
with post-vaccination titers [41–44]. For example, Gorse et al. [45] measured pre-vaccination and
post-vaccination serum hemagglutination inhibition (HAI) antibody titers to influenza A virus from
400 adults and found a strong inverse correlation of the pre- and post-measurements. Unfortunately
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these data are not available to us; if they were, a fitted regression model would be used to impute
the missing titers S(1) of placebo recipients.

Instead, we use the observed titers Si (0) of placebo recipients to impute the Si (1) values under
an ‘anti-equipercentile’ or ‘inverse rank preserving’ assumption, wherein placebo subjects with
lowest rank of Si (0) are assumed to have the highest rank of Si (1), placebo subjects with the
second lowest rank of Si (0) are assumed to have the second highest rank of Si (1), and so on.
The following table shows the distinct observed S(1) and S(0) values for the vaccine and placebo
groups as well as the imputed S(1) for each distinct observed S(0).

Weiss Strain A
Observed Si (1) — 32 — 128 256 512 1024 2048 4096 8192
Observed Si (0) 16 32 64 128 256 512 1024 — — —
Imputed Si (1) 8192 4096 2048 1024 512 256 128/32∗ — — —

PR8 Strain A
Observed Si (1) — — 64 128 256 512 1024 2048 — —
Observed Si (0) 16 32 64 128 256 512 — — — —
Imputed Si (1) 2048 1024 512 256 128 64 — — — —

∗Placebo recipients with Si (0)=1024 were randomly assigned Si (1)=128 or 32 with chance
one-half.

Based on the imputed data sets, for each influenza strain we estimated the marginal vaccine
efficacy curve at each distinct observed Si (1) value s1 by

̂mVE(s1)=1− P̂r(Y =1|S=s1, Z =1)

P̂r(Y =1|imputed S(1)=s1, Z =0)

where the probabilities in the numerator and denominator are estimated either nonparametrically
(by empirical fractions) or by logistic regression. Figure 3 (top panel) displays the estimated curves
mVE(s1), showing that for Weiss strain A titers the curve increases from 0 to 1 as titers rise,
supporting the high value of the titers as a level 1 principal SoP. In contrast, the estimated mVE(s1)
curve for PR8 strain A increases as s1 increases but less steeply, suggesting that PR8 strain titers
have partial value as a level 1 principal SoP. Because these results depend on the imputation model,
a sensitivity analysis was performed in which an extreme opposite imputation model was used.
Specifically, an equipercentile (i.e. rank preserving) assumption was made, which supposes that the
ranks of the Si (0) values in placebo recipients are the same as the ranks of the Si (1) values. Under
the equipercentile assumption the estimated mVE(s1) curve still increases considerably with s1 for
Weiss Strain A (Figure 3, bottom panel), supporting some robustness of the surrogate endpoint
result.

We stress that the main value of this analysis is to illustrate the evaluation of a level 1 principal
SoP, and the substantive result should be interpreted with caution. Both the anti-equipercentile and
equipercentile assumptions are strong and unverifiable. Had the data on pre-vaccination titers been
available, it would have been possible to estimate the bivariate distribution of (S(1), S(0)) in the
vaccine arm, which would provide a more credible technique for evaluating mVE(s1). In future
vaccine trials in populations with prior exposure to the pathogen under examination, it may be
fruitful to incorporate such pre-vaccination titers into the level 1 SoP evaluation.
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Figure 3. Nonparametric and parametric (logistic regression model based) estimates of mVE(s1) for
(a) Weiss Strain A and (b) PR8 Strain A under the anti-equipercentile assumption. As a sensitivity analysis,

panels (c) and (d) show these estimates under the equipercentile assumption.

3.3. Design of the PAVE-100 HIV vaccine efficacy trial

The PAVE-100 HIV vaccine efficacy trial, sponsored by the U.S. National Institutes of Health, the
U.S. Military HIV Research Program, the International AIDS Vaccine Initiative, and the Centers
for Disease Control and Prevention, is currently being planned. In the current design 8500 HIV
negative volunteers from the Americas, East Africa, and Southern Africa will be randomized
to a prime-boost vaccine regimen (DNA prime:Adenovirus 5 vector boost) or placebo in a 1:1
allocation. The design is event driven with a planned total of 280 HIV infections. A secondary
objective of the trial is to evaluate the magnitude of CD8+ T cell response levels, as measured by
the ELISpot assay from blood samples drawn at the week 26 visit after randomization, as a CoR
and as a level 1 principal SoP for HIV infection. In this section, we briefly consider how well
the BIP, close-out placebo vaccination (CPV) and combined (BIP+CPV) augmented trial designs
would be able to evaluate an SoP. We base this consideration on the discrete failure time method
developed by Qin et al. [34] for evaluating a level 1 principal SoP. Simulations reported there
verified that under A1–A3 and the BIP and/or CPV assumptions the method provided unbiased
estimates of regression parameters measuring surrogate value, and Wald-confidence intervals about
these parameters had correct coverage levels.

We conducted a small simulation study to match the PAVE-100 trial design. The total sample
size is 4250 subjects in each of the vaccine and placebo arms, and we assume 50 per cent vaccine
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efficacy, such that at the time of analysis there are an expected 187 placebo recipients and 94
vaccine recipients HIV infected. We suppose the ELISpot T cell response is measured in all infected
vaccine recipients and a 25 per cent simple random sample of uninfected vaccine recipients. For
the augmented designs with CPV, we suppose that 25 per cent of uninfected placebo recipients
receive the AIDS vaccine at study close-out. For the BIP and BIP+CPV designs, we suppose that
the titer of neutralizing antibodies to the Adenovirus 5 serotype vector that carries the HIV genes
is measured from all trial participants, as is planned for the trial. This measurement is chosen as
the BIP because it has been shown to inversely correlate with ELISpot response levels [46] and
plausibly does not independently predict the rate of HIV infection.

The BIP (Adenovirus 5 titers) and ELISpot response S(1) were generated from a bivariate
normal distribution with mean zero and variance 0.4 for each component (reflecting the variance

(a)

(c)

(d) (e)

(b)

I I

Figure 4. For data simulated to reflect the design of the PAVE-100 HIV vaccine efficacy trial, estimates
of VE(s1,0)=mVE(s1) under (a, b) the baseline irrelevant predictor design; (c) the close-out placebo
vaccination design; and (d, e) the combined design. The solid line is the true mVE(s1) curve, the dashed
line is the empirical average estimate of mVE(s1) over the 500 simulated data sets, and the dotted lines

are 50 estimates from 50 simulated data sets. �=0.5 for (a), (d) and �=0.9 for (b), (e).
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of the ELISpot assay) and correlation �=0.5 or �=0.9. Continuous failure times were generated
from the Cox model �(t |Z , S(1))=�0(t)exp{�1Z+�2S(1)+�3ZS(1)} and were binned into six
equal-length time intervals to reflect a semi-annual schedule of testing for HIV infection. The
true parameters were set at �2=−1.109 and �3=−0.91, reflecting a strongly predictive level 1
principal SoP with a 10-fold lower causal relative risk RR(S(1))=1−VE(S(1)) per 4 standard
deviation higher immune response S(1) (spanning the range of common immune responses). In
addition, �1 and the constant baseline hazard �0(t)=�0 were calibrated to give overall VE=0.5
and 187 expected infections in the placebo arm.

Based on 500 simulated vaccine trials, the BIP, CPV, and BIP+CPV augmented designs had
estimated power 0.988, 0.198, and 0.992 for rejecting the null hypothesis �3=0 of no surrogate
value in the case of �=0.5, and power 0.996, 0.198, and 0.998 in the case of �=0.9. This
demonstrates that the designs including a BIP that is at least 50 per cent correlated with S(1) will
provide high power to detect an excellent level 1 SoP, whereas CPV alone confers low power. Each
panel of Figure 4 shows the true VE(s1,0) curve, the average estimated curve over the simulated
data sets, and estimated curves for 50 randomly sampled individual data sets. Follmann [33] and
Gilbert and Hudgens [27] provide simulation results for a similar method that treats HIV infection
as a binary endpoint, which more fully describe how fast power increases with �. It is of interest
to perform additional simulations, wherein A3, the BIP condition, and/or the CPV assumption do
not hold, to assess the resulting bias in parameter estimation.

4. LEVEL 2 SoP

In practice, usually the main utility of a surrogate endpoint is to predict clinical efficacy of a
treatment for a new setting not studied in an efficacy trial. We refer to an immunological SoP that
provides reliable predictions of vaccine efficacy for a new setting as a level 2 SoP. To illustrate
the nature of a level 2 SoP, suppose an HIV vaccine efficacy trial is conducted in South Africa in
men and women exposed to subtype C HIVs through heterosexual sex. HVTN 503 is evaluating
Merck’s Adenovirus 5 vector vaccine in men and women exposed to subtype C HIVs through
heterosexual sex. Suppose hypothetically the trial identifies beneficial VE>0 and an excellent level
1 SoP. A question of interest would then be whether measurements of this immune response in
intravenous drug users that are exposed to subtype B HIVs through needle sharing in the urban
United States reliably predict vaccine efficacy. In this complex example, the predictive bridge of
interest spans different viral genetics, host genetics, cultural characteristics, and routes of exposure,
and as such may be quite difficult to validate. A much ‘shorter bridge’ to evaluate would consider
whether the level 1 SoP, applied to the same population as studied in the efficacy trial, reliably
predicts vaccine efficacy of a product identical to the tested product except it is produced by a
more efficient manufacturing process.

One approach to evaluating a level 2 SoP is meta-analysis of multiple efficacy and/or proof-
of-concept trials [31, 47, 48], possibly including post-licensure studies. The evaluation of a level 2
SoP is specific to the type of predictive bridge, so that the meta-analytic unit as well as the target
of the prediction must be appropriately chosen. For example, to predict vaccine efficacy against the
predominant influenza strain in next year’s flu season, the appropriate meta-analytic unit would be
the predominant circulating influenza strain across a set of years, and N strain-specific assessments
of immune responses and vaccine efficacies across N annual flu seasons would be required.
The observed relationship between the N estimated vaccine efficacies and summary contrasts of
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immune responses (vaccine versus placebo groups) could be used to predict vaccine efficacy for
the new setting based on a sample of immune responses in that setting (e.g. HAI antibody titers
to the influenza strain that is predicted to be predominant in the next flu season), and provide a
way to estimate the error in the prediction.

The meta-analysis approach is data intensive and may not always be feasible. An indirect
strategy for assessing a level 2 SoP requires a conceptual leap from an identified level 1 SoP to
a level 2 SoP. Without a meta-analytic assessment, this leap can only be made based on indirect
inferences and through incorporation of biological knowledge of mechanisms of vaccine protection.
Moreover, predictions based on meta-analysis rely on the assumption that the vaccine effects on
the immune response and the study endpoint for the new setting are sampled from the bivariate
distribution of the vaccine effects for the N meta-analytic units, which is not fully verifiable.
Therefore, even if large meta-analyses are conducted, the incorporation of biological information is
critically important for quantifying the value of an immunological measurement as a level 2 SoP.

5. DISCUSSION

In this paper, a statistical companion to Qin et al. [8], we have described a framework for evaluating
the utility of a biomarker measurement for predicting clinical treatment efficacy at three different
levels, ordered by scientific importance and by the extent of data requirements for making the
assessment. While this three-tier framework may be useful for randomized placebo-controlled
Phase IIb/III trials in many disease areas, for illustration we have focused on the assessment of
an immunological measurement as a surrogate endpoint for vaccine efficacy to prevent clinically
significant infection. At the first tier, the assessment of a CoR is relatively straightforward and
may be achievable with standard efficacy trial designs, although even at this level the assessment
is challenged by potential measurement error of the putative CoR, time variations of the CoR, and
the task of developing an efficient sampling design that optimally incorporates participant covariate
information.

An inference in a trial that VE>0 plus validation of an immunological CoR does not imply
that the immune response has any value as a surrogate endpoint. An immune response with no
capacity for predicting causal vaccine efficacy may be a CoR because it mirrors innate immunity
or some other factor such as risk behavior. In addition, for trials that conclude VE is zero, an
immunological CoR cannot be a surrogate endpoint unless certain vaccine effects on the immune
response (e.g. low-level effects) predict enhanced disease risk if vaccination is received. If VE=0
a level 1 SoP must satisfy VE(s1,s0)<0 for some values of (s1,s0) and VE(s1,s0)>0 for other
(s1,s0).

At the second tier of an immune correlate, the evaluation of a level 1 SoP can be approached
using methods for evaluating a surrogate endpoint based on a single large clinical trial. We have
considered methods based on the statistical and principal surrogate frameworks and provided an
example (the analysis of the 1942–1943 influenza vaccine trial) demonstrating that both frameworks
can identify an excellent level 1 SoP. However, in general it is quite difficult to evaluate a level 1
SoP via either framework, with pros and cons for each. Incorporating baseline covariates, such
as on host genetics or on innate immunity, can potentially overcome the challenges. In fact, for
both approaches we have noted that under strong assumptions about not missing any risk factors,
the assessment of a CoR is equivalent to the assessment of a level 1 SoP. The strong assumptions
are unverifiable, however, so that sensitivity analyses would be needed, that ideally account for
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the available biological knowledge of mechanisms of protection. In addition, we have summarized
novel study designs and data collection that can be used to evaluate a level 1 SoP under lighter
assumptions. These assumptions are not fully verifiable, however, suggesting the value of sensitivity
analysis and the need for further research.

Lastly, evaluation of a level 2 SoP can be approached via meta-analyses of multiple efficacy or
proof-of-concept trials and possibly post-licensure trials. These methods are limited by the difficulty
in defining the class of studies that form an appropriate basis for predicting vaccine efficacy for
a new setting and by imprecision in this prediction [48], again underscoring the importance of
drawing upon biological knowledge for helping to justify building a predictive bridge from a level
1 SoP to a level 2 SoP. A follow-up efficacy trial for the new setting may be required to credibly
support that the immunological measurement can reliably predict protection in that setting.

ACKNOWLEDGEMENTS

The authors are grateful to Misrak Gezmu for organizing the workshop and for the referees for helpful
comments that led to improvements. This work is supported by NIH grant 2 R01 AI54165-04.

REFERENCES

1. Fauci AS, Haynes BF, Pantaleo G. Toward an understanding of the correlates of protective immunity to HIV
infection. Science 1996; 271:324–328.

2. Clements-Mann ML. Lessons for AIDS vaccine development from non-AIDS vaccines. AIDS Research and
Human Retroviruses 1998; 14(Suppl. 3):S197–S203.

3. Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA,
Wyatt RT. HIV vaccine design and the neutralizing antibody problem. Nature Immunology 2004; 5:233–236.

4. Siber GR. Methods for estimating serological correlates of protection. Developments in Biological Standardization
1997; 89:283–296.

5. Chan ISF, Shu L, Matthews H, Chan C, Vessey R, Sadoff J, Heyse J. Use of statistical models for evaluating
antibody response as a correlate of protection against varicella. Statistics in Medicine 2002; 21:3411–3430.

6. Dunning AJ. A model for immunological correlates of protection. Statistics in Medicine 2006; 25:1485–1497.
7. Burzykowski T, Molenberghs G, Buyse M. The Evaluation of Surrogate Endpoints. Springer: New York, 2005.
8. Qin L, Gilbert PB, Corey L, McElrath J, Self SG. A framework for assessing an immunological correlate of

protection in vaccine trials. Journal of Infectious Diseases 2007; 196:1304–1312.
9. Szmuness W, Stevens CE, Zang EA, Harley EJ, Kellner A. A controlled clinical trial of the efficacy of the

hepatitis B vaccine (Heptavax B): a final report. Hepatology 1981; 1:377–385.
10. Lanata CF, Black RE, del Aguila R et al. Protection of Peruvian children against rotavirus diarrhea of specific

serotypes of one, two, or three doses of the RIT 4237 attenuated bovine rotavirus vaccine. Journal of Infectious
Diseases 1989; 159:452–459.

11. Clemens JD, Sack DA, Harris JR et al. Field trial of oral cholera vaccines in Bangladesh: results from three-year
follow-up. The Lancet 1990; 335:270–273.

12. Villa LL, Costa RL, Petta CA et al. Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18)
L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase
II efficacy trial. The Lancet Oncology 2005; 6:271–278.

13. Mehrotra DV, Li X, Gilbert PB. A comparison of eight methods for the dual-endpoint evaluation of efficacy in
a proof-of-concept HIV vaccine trial. Biometrics 2006; 62:893–900.

14. Buyse M, Molenberghs G. Criteria for the validation of surrogate endpoints in randomized experiments. Biometrics
1998; 54:1014–1029.

15. Huang Y, Pepe M, Feng Z. Evaluating the predictiveness of a continuous marker. 2007, DOI: 10.1111/j.1541-
0420.2007.00878.x.

16. Fleming TR. Surrogate markers in AIDS and cancer trials. Statistics in Medicine 1994; 13:1423–1435.
17. DeMets DL, Fleming TR. Surrogate endpoints in clinical trials: are we being misled? Annals of Internal Medicine

1996; 125:605–613.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (2007)
DOI: 10.1002/sim



P. B. GILBERT, L. QIN AND S. G. SELF

18. DeGruttola VG, Clax P, DeMets DL, Downing GJ, Ellenberg SS, Friedman L, Gail MH, Prentice R, Wittes J,
Zeger SL. Considerations in the evaluation of surrogate endpoints in clinical trials. Controlled Clinical Trials
2002; 22:485–502.

19. Prentice RL. Surrogate endpoints in clinical trials: definition and operational criteria. Statistics in Medicine 1989;
8:431–440.

20. Holland P. Statistics and causal inference. Journal of the American Statistical Association 1986; 81:945–961.
21. Rubin DB. Causal inference using potential outcomes: design, modeling, decisions. Journal of the American

Statistical Association 2005; 100:322–331.
22. Frangakis CE, Rubin DB. Principal stratification in causal inference. Biometrics 2002; 58:21–29.
23. Robins JM. An analytic method for randomized trials with informative censoring: Part I. Lifetime Data Analysis

1995; 1:241–254.
24. Rubin DB. Statistics and causal inference: which ifs have causal answers. Journal of the American Statistical

Association 1986; 81:961–962.
25. Hudgens MG, Halloran ME. Causal vaccine effects on binary post-infection outcomes. Journal of the American

Statistical Association 2006; 101:51–64.
26. Gilbert PB, Bosch RJ, Hudgens MG. Sensitivity analysis for the assessment of causal vaccine effects on viral

load in HIV vaccine trials. Biometrics 2003; 59:531–541.
27. Gilbert PB, Hudgens MG. Evaluating causal effect predictiveness of candidate surrogate endpoints. 2006,

submitted.
28. Kim HW, Canchola JG, Brandt CD, Pyles G, Chanock RM, Jensen K, Parrott RH. Respiratory synctial virus

disease in infants despite prior administration of antigenic inactivated vaccine. American Journal of Epidemiology
1969; 89:405–421.

29. Kliks SC, Nisalak A, Brandt WE, Wahl L, Burke DS. Antibody-dependent enhancement of dengue virus growth
in human monocytes as a risk factor for dengue hemorrhagic fever. American Journal of Tropical Medicine and
Hygiene 1989; 40:444–451.

30. Hughes MD. Evaluating surrogate endpoints. Controlled Clinical Trials 2002; 23:703–707.
31. Molenberghs G, Buyse M, Geys H, Renard D, Burzykowski T, Alonso A. Statistical challenges in the evaluation

of surrogate endpoints in randomized trials. Controlled Clinical Trials 2002; 23:607–625.
32. Robins JM, Hernan MA, Brumback B. Marginal structural models and causal inference in epidemiology.

Epidemiology 2000; 11:550–560.
33. Follmann D. Augmented designs to assess immune response in vaccine trials. Biometrics 2006; 62:1161–1169.
34. Qin L, Gilbert PB, Follmann D, Li D. Assessing surrogate endpoints in vaccine trials with case-cohort sampling

and the Cox model. Annals of Applied Statistics 2006, submitted.
35. Pearl J. Causality: Models, Reasoning, and Inference. Cambridge University Press: Cambridge, 2000.
36. Flynn NM, Forthal DN, Harro CD, Mayer KH. The rgp120 HIV Vaccine Study Group. Placebo-controlled

trial of a recombinant glycoprotein 120 vaccine to prevent HIV infection. Journal of Infectious Diseases 2005;
191:654–665.

37. Prentice RL. A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika
1986; 73:1–11.

38. Borgan O, Langholz B, Samuelsen SO, Goldstein L, Pogoda J. Exposure stratified case-cohort designs. Lifetime
Data Analysis 2000; 6:39–58.

39. Gilbert PB, Peterson ML, Follmann D, Hudgens MG, Francis DP, Gurwith M, Heyward WL, Jobes DV, Popovic V,
Self SG, Sinangil F, Burke D, Berman PW. Correlation between immunologic responses to a recombinant
glycoprotein 120 vaccine and incidence of HIV-1 infection in a Phase 3 HIV-1 preventive vaccine trial. Journal
of Infectious Diseases 2005; 191:666–677.

40. Salk JE, Menke Jr WJ, Francis Jr T. A clinical, epidemiological and immunological evaluation of vaccination
against epidemic influenza. American Journal of Hygiene 1943; 42:57–93.

41. Ennis FA, Yi-Hua Q, Schild GC. Antibody and cytotoxic T lymphocyte responses of humans to live and
inactivated influenza vaccines. Journal of General Virology 1982; 58:273–281.

42. Clements ML, Tierney EL, Murphy BR. Response of seronegative and seropositive adult volunteers to live
attenuated cold-adapted reassortant influenza A virus vaccine. Journal of Clinical Microbiology 1985; 21:997–999.

43. Gorse GJ, Belshe RB. Enhancement of anti-influenza A virus cytotoxicity following influenza A virus vaccination
in older, chronically ill adults. Journal of Clinical Microbiology 1990; 28:2539–2550.

44. Treanor JJ, Roth FK, Betts RF. Use of live cold-adapted influenza A H1N1 and H3N2 virus vaccines in
seropositive adults. Journal of Clinical Microbiology 1990; 28:596–599.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (2007)
DOI: 10.1002/sim



EVALUATING A SURROGATE ENDPOINT

45. Gorse GJ, O’Connor TZ, Newman FK, Mandava MD, Mendelman PM, Wittes J, Peduzzi PN. Immunity to
influenza in older adults with chronic obstructive pulmonary disease. Journal of Infectious Diseases 2004;
190:11–19.

46. Catanzaro AT, Koup RA, Roederer M et al. Safety and immunogenicity evaluation of a multiclade HIV-1 candidate
vaccine delivered by a replication-defective recombinant adenovirus vector. Journal of Infectious Diseases 2006;
194:1638–1649.

47. Daniels MJ, Hughes MD. Meta-analysis for the evaluation of potential surrogate markers. Statistics in Medicine
1997; 16:1965–1982.

48. Gail MH, Pfeiffer R, Van Houwelingen HC, Carroll RJ. On meta-analytic assessment of surrogate outcomes.
Biostatistics 2000; 1:231–246.

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. (2007)
DOI: 10.1002/sim


