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SUMMARY

The efficacy of an HIV vaccine to prevent infection is likely to depend on the genetic variation of the
exposing virus. This paper addresses the problem of using data on the HIV sequences that infect vaccine
efficacy trial participants to (1) test for vaccine efficacy more powerfully than procedures that ignore the
sequence data and (2) evaluate the dependence of vaccine efficacy on the divergence of infecting HIV
strains from the HIV strain that is contained in the vaccine. Because hundreds of amino acid sites in each
HIV genome are sequenced, it is natural to treat the genetic divergence as a continuous mark variable
that accompanies each failure (infection) time. Problems (1) and (2) can then be approached by testing
whether the ratio of the mark-specific hazard functions for the vaccine and placebo groups is unity or
independent of the mark. We develop nonparametric and semiparametric tests for these null hypotheses
and nonparametric techniques for estimating the mark-specific relative risks. The asymptotic properties
of the procedures are established. In addition, the methods are studied in simulations and are applied to
HIV genetic sequence data collected in the first HIV vaccine efficacy trial.

Keywords: Competing risks; Genetic data; Mark variable; Nonparametric statistics; Proportional hazards; Survival
analysis.

1. INTRODUCTION

Competing risks failure time data consist of survival times and a mark variable that describes a feature
of the failure. Often such data are available for 2 treatment groups, and it is of interest to account for
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this mark in comparing the failure experience. In this article, we develop procedures to assess continuous
mark-specific relative risks. This departs from our recent work (Gilbert and others, 2004) in which we
developed a test for the dependence of a single continuous mark-specific hazard rate on the mark variable
(i.e. the “1-sample” problem). We expand the scope of research to include estimation as well as testing
and semiparametric as well as nonparametric hypothesis testing.

We are motivated by applications in preventive HIV vaccine efficacy trials. The extensive genetic
diversity of HIV poses one of the greatest challenges to developing an AIDS vaccine. Vaccine efficacy
to prevent infection, usually defined in terms of the hazard ratio between vaccine and placebo recipients,
may decrease with the viral genetic sequence divergence of a challenge HIV from the virus or viruses
represented in the vaccine construct (Gilbert and others, 1999). Detecting that the vaccine protects against
some strains but not others, and quantifying the relationship between vaccine efficacy and viral divergence,
is useful for guiding vaccine deployment decisions and for designing new vaccines that provide greater
breadth of protection.

From 1998 to 2003, VaxGen Inc. conducted the first HIV vaccine efficacy trial (Flynn and others,
2005). HIV-uninfected volunteers at high risk for acquiring HIV were randomized to receive the vaccine
AIDSVAX (n1 = 3598) or placebo (n2 = 1805). Subjects were monitored for 3 years for the primary
study end point HIV infection. For each subject who became HIV infected, the envelope glycoprotein
(gp120) region of the infecting virus was sequenced. Of the 368 subjects who acquired HIV, the sequence
data were collected for 336 subjects (217 of 241 vaccine and 119 of 127 placebo). VaxGen hypothesized
that the level of vaccine efficacy would be higher against HIVs with gp120 amino acid sequences that
were relatively similar to either of the 2 HIV strains (named MN and GNE8) that were represented in the
vaccine. The distance of each infecting virus to MN and GNE8 was measured by the percent mismatch
in the aligned amino acid sequences (i.e. Hamming distance) for 3 sets of positions hypothesized to be
important for neutralizing HIV (Wyatt and others, 1998): (1) the neutralizing face core of gp120 that was
crystalized, (2) the neutralizing face core plus the variable loop V2/V3 regions, and (3) the V3 loop. For
each metric and infecting virus, the mark is defined as the minimum of the 2 distances to the MN and
GNE8 reference sequences.

Gilbert and others (1999) and Gilbert (2000) developed a semiparametric biased sampling model as a
tool for studying vaccine efficacy as a function of a continuous mark. This model parametrically specifies
the relationship between the vaccine efficacy and the mark and leaves the distribution of the mark in
the infected placebo group unspecified. However, there are no data available for suggesting the correct
parametric model, so nonparametric methods are desirable. Furthermore, the earlier work is limited by
conditioning on infection, so odds ratios but not relative risks of infection can be estimated, and the model
treats HIV infection as a binary outcome, ignoring the time to HIV infection. The methods presented here
were developed because they are free from these limitations, as they are non- or semi-parametric, are
prospective, and incorporate the failure times.

We introduce tests for the hypothesis that the continuous mark-specific risks in the 2 groups coincide
and for the hypothesis that the relative mark-specific risk between the groups is independent of the mark.
Let Tk be the time to end point and Vk be the mark variable for a representative individual in group
k (in vaccine trials, k = 1 indicates vaccine and k = 2 indicates placebo). In the study, we observe
(Xk, δk, δk Vk), where Xk = min{Tk, Ck}, δk = I (Tk � Ck), and Ck is a censoring time assumed to be
independent of both Tk and Vk , k = 1, 2. The notation δk Vk indicates that the mark Vk is only observed if
the failure time is observed (δk = 1); if δk = 0, Vk is undefined and not relevant. We assume that Vk has
known and bounded support; rescaling Vk if necessary, this support is taken to be [0, 1]. The mark-specific
hazard rate in group k is

λk(t, v) = lim
h1,h2→0

P{Tk ∈ [t, t + h1), Vk ∈ [v, v + h2)|Tk � t}/h1h2 (1.1)
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and the mark-specific cumulative incidence function is

Fk(t, v) = lim
h2→0

P{Tk � t, Vk ∈ [v, v + h2)}/h2, (1.2)

k = 1, 2, with t ranging over a fixed interval [0, τ ]. These functions are natural extensions of the
cause-specific hazard function and cumulative incidence function that have been extensively studied for
a discrete mark variable (e.g. Prentice and others, 1978). Similar to the discrete mark case, the functions
(1.1) and (1.2) are related by the equation Fk(t, v) = ∫ t

0 λk(s, v)Sk(s)ds, where Sk(t) is the survival
function for group k, and are estimable from the observed group k competing risks failure time data.

A standard measure of vaccine efficacy to prevent infection at time t is the relative reduction in hazard
due to vaccination: VE(t) = 1 − λ1(t)/λ2(t), see Halloran and others (1997). It is natural to extend this
definition to allow the vaccine efficacy to depend on viral divergence: VE(t, v) = 1 − λ1(t, v)/λ2(t, v).
To interpret VE(t, v), consider that λk(t, v) aggregates many parameters that are not identifiable due to
the absence of data on sexual and needle contacts. These parameters include (i) the participant distri-
bution of per-contact susceptibility to strain v , (ii) the distribution of infectiousness of contacts infected
with strain v , (iii) the mechanism of vaccine protection (Halloran and others, 1992), (iv) the density of
V at v in the population of HIV-infected contacts, and (v) the participant distribution of contact rates.
Despite these complicating factors, randomization, double blinding, and the fact that HIV infection is a
rare event in HIV vaccine efficacy trials imply that VE(t, v) should approximately measure the vaccine
effect to reduce susceptibility to HIV acquisition given exposure to strain v at time t . Strong assumptions
about the parameters in (i)–(v) confer specific meaningful interpretations to VE(t, v), as explored in the
supplementary material available at Biostatistics online.

The VE(t) and VE(t, v) measures must be used with care given that they do not account for the
network structure of sexual and/or needle contacts. Alternative concepts of VE could be considered that
explicitly consider this structure and incorporate individual-level models of vaccine response.

To account for the mark in testing for vaccine efficacy, we develop tests for

H0
0 : λ1(t, v) = λ2(t, v), for (t, v) ∈ [0, τ ] × [0, 1],

against the following alternative hypotheses:

H0
1 : λ1(t, v) � λ2(t, v), for all (t, v) ∈ [0, τ ] × [0, 1],

H0
2 : λ1(t, v) �= λ2(t, v), for some (t, v) ∈ [0, τ ] × [0, 1],

with strict inequality for some (t, v) ∈ [0, τ ] × [0, 1] in H0
1 . Testing H0

0 evaluates VE(t, v) = 0 for all t
and v , that is, whether there is any vaccine efficacy against any HIV strain. As we show in simulations,
tests of H0

0 can have much greater power than standard tests of vaccine efficacy that ignore the mark,
that is, that evaluate the null hypothesis λ1(t) = λ2(t) for all t ∈ [0, τ ]. A test ignoring the mark should
be done in conjunction with a test of H0

0 , however, to assess the overall clinical/public health benefit of
the vaccine. To illustrate the importance of carrying out both tests, if VE(t) = 0 and VE(t, v) is positive
(negative) for v � (>) 0.5, then the vaccine clearly should not be declared effective. Yet, the analysis
accounting for the mark would lead to follow-up studies of the mechanism by which the vaccine impacted
mark-specific infection risk.

If H0
0 is rejected, then it is of interest to assess if vaccine efficacy varies with strain distance. Accord-

ingly, we also develop tests for

H0 : λ1(t, v)/λ2(t, v) does not depend on v for t ∈ [0, τ ]
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against the following alternative hypotheses:

H1 : λ1(t, v1)/λ2(t, v1) � λ1(t, v2)/λ2(t, v2), for all v1 � v2, t ∈ [0, τ ],

H2 : λ1(t, v1)/λ2(t, v1) �= λ1(t, v2)/λ2(t, v2), for some v1 � v2, t ∈ [0, τ ],

with strict inequality for some t, v1, v2 in H1. Because H0 and H1 can be reexpressed as H0: VE(t, v) =
VE(t) for all t, v and H1: VE(t, v1) � VE(t, v2) for all t, v1 � v2 (with < for some v1 > v2), testing H0
versus H1 assesses whether vaccine efficacy decreases with HIV sequence divergence. Scientifically, this
is of particular interest to assess.

To develop test statistics for evaluating H0, we will exploit the observation that H0 holds if and only if
the mark-specific relative risk coincides with the ordinary relative risk, that is, λ1(t, v)/λ2(t, v) = λ1(t)/
λ2(t) for all t, v , where λk(t) = ∫ 1

0 λk(t, v)dv is the group-k hazard irrespective of the mark. As for
discrete competing risks, the density of the mark makes no contribution to the total hazard other than
through the mark-specific hazard, which represents the hazard rate accounting for the density of a spe-
cific strain. In Section 2, we introduce the proposed procedures for testing H0

0 and H0. Large-sample
results and a simulation technique needed to implement the test procedures are summarized in Section 3.
In Section 4, we discuss nonparametric estimation of the mark-specific vaccine efficacy. We summarize
the results of a simulation experiment in Section 5, and an application to data from the VaxGen trial is
provided in Section 6. Section 7 contains concluding remarks. The supplementary material available at
Biostatistics online (http://www.biostatistics.oxfordjournals.org) contains expanded details on the inter-
pretation of VE(t, v) (Section A), details of the large-sample results and Gaussian multipliers simulation
technique for estimating critical values (Section B), expanded simulation results (Section C), and proofs
of the large-sample results (Section D).

2. TEST PROCEDURE

We base our approach on estimates of the doubly cumulative mark-specific hazard functions �k(t, v) =∫ v
0

∫ t
0 λk(s, u)ds du, k = 1, 2. Given the observation of i.i.d. replicates (Xki , δki , δki Vki ), i = 1, . . . , nk , of

(Xk, δk, δk Vk), k = 1, 2, the nonparametric maximum likelihood estimator (MLE) of �k(t, v) is provided
by the Nelson–Aalen-type estimator

�̂k(t, v) =
∫ t

0

Nk(ds, v)

Yk(s)
, t � 0, v ∈ [0, 1], (2.1)

where Yk(t) = ∑nk
i=1 I (Xki � t) is the size of the risk set for group k at time t , and

Nk(t, v) =
nk∑

i=1

I (Xki � t, δki = 1, Vki � v)

is the marked counting process with jumps at the uncensored failure times Xki and associated marks Vki ,
see Huang and Louis (1998, (3.2)).

Our tests of H0
0 are based on comparing �̂1(t, v) and �̂2(t, v) and of H0 are based on compar-

ing the nonparametric MLE of �1(t, v) − �2(t, v) with an estimate under H0. Since H0 is equiva-
lent to �1(t, v) = ∫ t

0 [λ1(s)/λ2(s)]�2(ds, v) for all t, v, under H0 we may estimate the difference

�1(t, v) − �2(t, v) by
∫ t

0 [(λ̂1(s)/λ̂2(s)) − 1]�̂2(ds, v), where λ̂k(t) is a nonparametric estimator of
λk(t), as discussed below. Alternatively, under a proportional marginal hazards assumption, λ1(t)/λ2(t) =
exp(β), this difference may be estimated by

∫ t
0 [exp(β̂) − 1]�̂2(ds, v), where β̂ is the maximum partial

http://www.biostatistics.oxfordjournals.org
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likelihood estimator of β, which leads to a semiparametric test for H0. The nonparametric approach
makes minimal assumptions but requires smoothing over time, whereas the semiparametric approach
avoids smoothing and in principle may provide greater power when the proportional hazards assumption
holds.

For the nonparametric approach, we estimate each hazard function λk(t) by kernel smoothing:

λ̂k(t) = 1

bk

∫ τ+δ

0
K

(
t − s

bk

)
d�̂k(s), (2.2)

where �̂k(s) = ∫ t
0 (1/Yk(s))dNk(s) is the Nelson–Aalen estimator of �k(t) = ∫ t

0 λk(s)ds, with Nk(t) =∑nk
i=1 I (Xki � t, δki = 1). The kernel K is a bounded symmetric function with support [−1, 1] and

integral 1. The bandwidth bk is a positive parameter that indicates the window [t − bk, t + bk] over which
�̂k(t) is smoothed and converges to zero as nk → ∞.

2.1 Test processes and test statistics

Based on the above discussion, we introduce test processes of the form

Lr
n(t, v) =

√
n1n2

n

∫ t

a
Hn(s)[�̂1(ds, v) − r̂(s)�̂2(ds, v)] (2.3)

for t � 0, 0 � v � 1, where Hn(·) is a suitable weight process converging to a nonrandom function
H(·) and a � 0. The process Hn(·) may be used to upweight regions with less variability, improving
power, or for other reasons considered in Sections 3.2 and B.3 of the supplementary material available at
Biostatistics online.

The superscript r reflects the choice of process r̂(s) in the test process and indicates whether it is used
to test H0

0 (indicated by r as 1, corresponding to r̂(s) = 1), to test H0 nonparametrically (indicated by
r as np; r̂(s) = λ̂1(s)/λ̂2(s)) or to test H0 semiparametrically (indicated by r as sp; r̂(s) = exp(β̂)). A
simple calculation shows that for r as np, [·] in (2.3) compares �̂1(ds, v)−�̂2(ds, v) to the nonparametric
estimate of �1(ds, v) − �2(ds, v) under H0 described above. The parallel result holds for r as sp using
the semiparametric estimate of �1(ds, v) − �2(ds, v) under H0.

A variety of test statistics can be formulated as functionals of Lr
n(t, v). We develop integration-type

and supremum-type statistics. With wV (v) a known nonnegative weight function, large values of the
following statistics provide evidence against H0

0 in the direction of H1
0 (first 2 statistics) or H2

0 (second 2
statistics):

Û 1
1 = L1

n(τ, 1), Û 1
2 =

∫ 1

0
wV (v)L1

n(τ, v)dv, (2.4)

Û 1
3 = |L1

n(τ, 1)|, Û 1
4 =

∫ 1

0
wV (v)(L1

n(τ, v))2 dv . (2.5)

For testing H0, let yk(t) = P(Xk � t), let τ̃ = sup{t : y1(t) > 0 and y2(t) > 0}, and assume τ < τ̃ .
To simplify the proofs and the conditions on the rates of convergence concerning bk , we take a > 0 and
construct the test statistics from the process Lr

n(t, v) over a � t � τ, 0 � v � 1. In practice, however,
there would be no harm in taking a = 0 in order to use as much of the data as possible (this is done in the
simulations and application).
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Set �r
n(t, v1, v2) = Lr

n(t, v1) + Lr
n(t, v2) − 2Lr

n(t, (v1 + v2)/2). For r as np or sp, the following test
statistics measure departures from H0 in the direction of H1 (Ûr

1 ) or H2 (Ûr
2 ):

Ûr
1 = sup

v1<v2

sup
0�t1<t2<τ

{�r
n(t2, v1, v2) − �r

n(t1, v1, v2)}, (2.6)

Ûr
2 = sup

v1<v2

sup
0�t1<t2<τ

|�r
n(t2, v1, v2) − �r

n(t1, v1, v2)|. (2.7)

To motivate the statistics Ûr
1 and Ûr

2 , we note from the proof of Theorem 2 that (n/n1n2)
1/2[�r

n(t2, v1,

v2)−�r
n(t1, v1, v2)] converges in probability to δ(t1, t2, v1, v2) = ∫ t2

t1

∫ v2
v1+v2

2

H(s)(λ1(s, v)−r(s)λ2(s, v))

dv ds − ∫ t2
t1

∫ v1+v2
2

v1
H(s)(λ1(s, v) − r(s)λ2(s, v))dv ds, where r(s) = λ1(s)/λ2(s) or exp(β). Under H0,

δ(t1, t2, v1, v2) = 0 for all t1, t2 ∈ [0, τ ] and v1, v2 ∈ [0, 1]. Under H1 and some smoothness conditions,
δ(t1, t2, v1, v2) > 0 for some t1 < t2 ∈ [0, τ ] and v1 < v2 ∈ [0, 1]. Therefore, large values of Ûr

1 (Ûr
2 )

provide evidence against H0 in the direction of H1 (H2).
In Section 3, we provide results that all 3 processes Lr

n(t, v) (indexed by r ) converge weakly to a
Gaussian process under the appropriate null hypothesis. We also state results on the consistency of the
proposed tests against their alternatives and summarize a simulation procedure for determining the critical
values of the Ûr

j .

3. LARGE-SAMPLE RESULTS

We summarize the asymptotic results with theorems and proofs relegated to the supplementary material
available at Biostatistics online. Theorem 1 gives regularity conditions under which Lr

n(t, v) defined in
(2.3) converges weakly to a process Lr (t, v) under H0 as n → ∞.

Let Ur
j be defined the same as Ûr

j in (2.6) and (2.7), with Lr
n(t, v) replaced with Lr (t, v). By the

continuous mapping theorem, Û np
j

D−→ U np
j under H0, so P(Û np

j > c jα) → α, where c jα is the upper

α-quantile of U np
j . However, the c jα are unknown and very difficult to estimate due to the complicated

nature of the limit process Lnp(t, v). In Section 3.1, we summarize a Monte Carlo procedure to obtain each
c jα . Theorem 2 establishes that each Û np

j is consistent against its alternative, that is, P(Û np
1 > c1α) → 1

as n → ∞ under H1 and P(Û np
2 > c2α) → 1 as n → ∞ under H2. The parallel results hold for Û 1

j

and Û sp
j .

3.1 Gaussian multipliers simulation procedure

We now summarize a Gaussian multipliers technique for simulating each of the test processes Lnp
n (t, v),

Lsp
n (t, v), and L1

n(t, v) under the null hypothesis, cf. Lin and others (1993). Section B of the supplemen-
tary material available at Biostatistics online describes a process

Lnp∗
n (t, v) =

√
n2

n
n1

−1/2
n1∑

i=1

ĥ1i (t, v)W1i −
√

n1

n
n2

−1/2
n2∑

i=1

ĥ2i (t, v)W2i , (3.1)

where ĥ1i (t, v) and ĥ2i (t, v) are functions of the data and Wki , i = 1, . . . , nk, k = 1, 2, are i.i.d. standard
normal random variables. Theorem 3 states that the conditional weak limit of the process Lnp∗

n (t, v) given
the observed data is the same as the weak limit of Lnp

n (t, v) under H0. This result implies that asymptoti-
cally consistent estimates of the critical values c jα can be obtained by comparing Û np

j to a null reference
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distribution formed by the statistics Û np∗
j computed from Lnp∗

n (t, v) using replicate sampling of W1i and

W2i . The supplementary material available at Biostatistics online describes parallel processes Lsp∗
n (t, v)

and L1∗
n (t, v) and shows that the same Gaussian multipliers procedure can be used to consistently estimate

critical values for the semiparametric tests of H0 and the tests of H0
0 .

3.2 Choice of weight process

The test process is more variable at larger failure times, so it is advisable to choose the weight process to
downweight the upper tail of the integral, and we suggest

Hn(s) = √
Y1(s)Y2(s)/n1n2. (3.2)

The test can be made invariant to the order of the 2 groups by including r̂(s)−1/2 in Hn(s). The weight
Hn(s) can also be chosen to increase power against specific alternatives (Sun, 2001).

4. ESTIMATION OF MARK-SPECIFIC VACCINE EFFICACY

Precise estimation of VE(t, v) introduced in Section 1 requires huge sample sizes because smoothing is
required in both v and t , and generally efficacy trials do not provide sufficient samples (Gilbert and others,
2002). Accordingly, we consider an alternative notion of mark-specific vaccine efficacy defined in terms
of cumulative incidences:

VEc(t, v) = 1 − F1(t, v)/F2(t, v),

which we call cumulative vaccine efficacy. This represents a time-averaged — rather than instantaneous
— measure of vaccine efficacy and is much easier to estimate than VE(t, v). We also consider the doubly
cumulative vaccine efficacy

VEdc(t, v) = 1 − P(T1 � t, V1 � v)/P(T2 � t, V2 � v),

which can be estimated without any smoothing and with greater precision than VEc(t, v).
A nonparametric estimator of VEc(t, v) is given by V̂E

c
(t, v) = 1 − F̂1(t, v)/F̂2(t, v), where

F̂k(t, v) = 1

bk

∫ 1

0

∫ t

0

Ŝk(s−)

Yk(s)
K

(
v − u

bk

)
Nk(ds, du), (4.1)

Ŝk(t) is the Kaplan–Meier estimate of Sk(t), K (·) is a bounded symmetric kernel function with support
[−1, 1] and integral 1, and bk > 0 is a bandwidth. The estimator F̂k(t, v) is the continuous analog of the
estimator that has been used for a discrete mark (Prentice and others, 1978).

If F1(t, v) �= 0 and F2(t, v) �= 0, a 100(1 − α)% pointwise confidence interval for VEc(t, v) can be
computed by transforming symmetric confidence limits about log(F1(t, v)/F2(t, v)):

1 − (1 − V̂E
c
(t, v)) exp

⎛⎝±zα/2

√
V̂ar{F̂1(t, v)}

F̂1(t, v)2
+ V̂ar{F̂2(t, v)}

F̂2(t, v)2

⎞⎠,

V̂ar{F̂k(t, v)} = 1

b2
k

∫ 1

0

∫ t

0

[
Ŝk(s−)

Yk(s)
K

(
v − u

bk

)]2

Nk(ds, du). (4.2)

To estimate VEdc(t, v), each P(Tk � t, Vk � v) is simply estimated by
∫ t

0 {Ŝk(s−)/Yk(s)} Nk(ds, v), the
standard estimator for the discrete cumulative incidence function for cause of failure defined by V � v,
and its variance is estimated by

∫ t
0 {Ŝk(s−)/Yk(s)}2 Nk(ds, v).
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5. SIMULATION EXPERIMENT

The simulations are based on the features of the VaxGen trial described in Section 1. We study perfor-
mance of the test statistics Û 1

j , j = 1, 2, 3, 4; Û np
j and Û sp

j , j = 1, 2; and of V̂E
c
(τ, v), with τ = 3

years. We focus on the case that the mark-specific hazard function factors as λk(t, v) = λk(t)ck(v). Lim-
ited simulations under more complicated models showed comparable performance of the procedures (see
supplementary Table 1 available at Biostatistics online). Under the factorization, the cumulative incidence
function for group k is Fk(t, v) = P{Tk � t}ck(v). In the first set of simulations, we specify T1 and T2 to
be exponential with parameters θλ2 and λ2, respectively, so that the cumulative vaccine efficacy by time
τ irrespective of the mark V is given by VEc(τ ) = 1 − (1 − exp(−λ2θτ))/(1 − exp(−λ2τ)), where λ2
is the constant infection hazard rate in the placebo group. Here, θ is the constant infection hazard ratio
between groups 1 and 2. In the second set of simulations, we specify non-proportional hazards λ1(t) and
λ2(t) to examine the effect of violating the assumption used by the semiparametric tests of H0. In this
case, λ2(t) = λ2 as above and T1 is distributed as Weibull with λ1(t) = 2λ1t .

We select λ2 so that 50% of placebo recipients are expected to be infected by τ = 36 months, and
consider VEc(τ ) = 0.0, 0.33, and 0.67. Next, we specify

ck(v) = [βk(1.51/βk − 0.51/βk )]−1(v + 0.5)(1/βk )−1, for 0 � v � 1.

The cumulative vaccine efficacy is given by

VEc(τ, v) = 1 − (1 − VEc(τ ))
β2

β1

[
1.51/β2 − 0.51/β2

1.51/β1 − 0.51/β1

]
(v + 0.5)(1/β1)−(1/β2).

Table 1. Empirical power (×100%) for testing H0
1 and H0

2 for data simulated with λk(t, v) = λkck(v),
k = 1, 2

nk Test Alternative VE(τ ) = 0 VE(τ ) = 0.33 VE(τ ) = 0.67

β1 β1 2-sided β1 2-sided

1 1 0.5 0.25 1 0.5 0.25

100 Cox† 5.2 65.1 65.1 65.1 61.8 99.9 99.9 99.9 99.8
(48)‡ Û1

1 H0
1 7.9 68.1 72.3 78.8 58.7 99.8 100 100 96.8

Û1
2 H0

1 7.7 58.5 81.0 97.8 56.5 97.8 100 100 97.7

Û1
3 H0

2 5.9 55.4 60.2 69.7 47.3 98.9 99.5 100 94.8

Û1
4 H0

2 6.7 47.6 71.8 94.8 43.1 96.8 99.3 100 94.6

200 Cox 5.0 90.6 90.6 90.6 100 100 100 100 100
(95)‡ Û1

1 H0
1 5.0 92.7 94.3 97.2 91.5 100 100 100 100

Û1
2 H0

1 5.3 86.0 98.4 100 88.1 100 100 100 100

Û1
3 H0

2 7.0 87.5 90.3 94.7 84.7 100 100 100 100

Û1
4 H0

2 5.3 81.0 95.4 100 79.4 100 100 100 100

400 Cox 5.8 99.7 99.7 99.7 100 100 100 100 100
(190)‡ Û1

1 H0
1 6.6 99.9 99.9 100 99.5 100 100 100 100

Û1
2 H0

1 6.0 99.0 100 100 98.8 100 100 100 100

Û1
3 H0

2 5.3 99.6 99.9 100 99.0 100 100 100 100

Û1
4 H0

2 5.2 97.9 100 100 97.6 100 100 100 100

†Test statistic is a Wald Z -statistic based on the standard Cox model that ignores the mark.
‡Average number of subjects infected in group 2 (placebo).
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Note that VE(τ, v) = VE(τ ) and VEc(τ, v) = VEc(τ ) if and only if β1 = β2 so that setting β2/β1 = 1.0
represents H0. Furthermore, β2/β1 > 1 implies VE(τ, v) and VEc(τ, v) decrease with v, and the extent
of departure from H0 increases with β2/β1. We also consider a 2-sided alternative with c2(v) = 1 and
c1(v) = 16

3 v I
(
v < 1

2

) + ( 8
3 − 8

3v
)
I
(
v � 1

2

)
.

The weight process Hn(·) of (3.2) is used for the test statistics and ŵV (·) = 1 for Û 1
2 and Û 1

4 . For
kernel estimation of λk(t), k = 1, 2, the Epanechnikov kernel K (x) = 0.75(1−x2)I (|x | � 1) is used. For
each simulation iteration, the optimal bandwidth bk is chosen to minimize an asymptotic approximation
to the mean integrated squared error of λ̂k (Andersen and others, 1993, p 240) separately for k = 1, 2 and
the method of Gasser and Müller (1979) is used to correct for bias in the tails.

The nominal level of the tests is set at 0.05, and critical values are calculated using 500 replicates of
the Gaussian multipliers technique summarized in Section 3.2. We choose n = 100, 200, or 400, and in
addition to the 50% administrative censoring for the failure times at 36 months, we use a 10% random
censoring rate in each arm. The performance statistics are calculated based on 1000 simulated data sets.

The results in Table 1 indicate that the tests of H0
0 have appropriate sizes and high powers. When

VE(t, v) declines with v , they have greater power than the Cox model Wald test of VE(t) = 0. Therefore,
accounting for the mark variable can substantially improve efficiency. This is especially the case for Û 1

2
although this test has less power than the Cox model test if VE(t, v) is constant in v (i.e. β1 = β2). In
contrast, the power of Û 1

1 is less sensitive to how strongly VE(t, v) varies in v . The corresponding 2-sided
tests Û 1

3 and Û 1
4 show a similar comparative pattern but with lower power for the 1-sided alternatives.

The results in Table 2 show that the tests of H0 perform well at moderate sample sizes. Somewhat
surprisingly, for small/moderate samples, the semiparametric tests did not provide greater power than
the nonparametric tests in the case that the failure times had proportional hazards. To explain this, note
that the nonparametric and semiparametric test processes involve contrasts �̂1(dt, v) − r̂(t)�̂2(dt, v),
with r̂(t) = λ̂1(t)/λ̂2(t) and exp(β̂), respectively, and the alternative hypothesis involves changes of

Table 2. Empirical power (×100%) for testing H1 and H2 for data simulated with λk(t, v) = λkck(v),
k = 1, 2

nk Test Alternative VE(τ ) = 0.33 VE(τ ) = 0.67

β1 2-sided β1 2-sided

1 0.5 0.25 1 0.5 0.25

100 Û
np
1 H1 6.4 21.8 59.0 42.7 7.1 17.0 35.2 22.9

(48)† Û
np
2 H2 6.2 15.9 47.7 43.3 6.7 12.2 26.1 20.4

Û
sp
1 H1 6.2 18.3 52.9 35.8 5.7 12.8 30.2 17.8

Û
sp
2 H2 4.4 11.1 41.4 38.8 3.5 7.3 18.7 15.3

200 Û
np
1 H1 6.3 32.4 87.0 78.3 6.7 21.0 62.7 48.8

(95)† Û
np
2 H2 6.8 23.0 81.4 80.9 6.5 14.3 54.2 51.4

Û
sp
1 H1 5.6 29.7 84.8 76.8 5.5 20.0 61.1 46.3

Û
sp
2 H2 5.4 20.8 79.5 81.4 4.8 13.2 49.6 45.6

400 Û
np
1 H1 5.8 48.2 99.5 98.3 6.2 33.7 93.3 87.4

(190)† Û
np
2 H2 5.2 35.8 98.6 98.7 5.8 25.4 89.2 90.4

Û
sp
1 H1 5.4 46.7 99.0 98.3 5.5 32.7 92.9 86.1

Û
sp
2 H2 4.8 35.3 98.5 98.7 5.1 23.8 87.9 89.4

†Average number of subjects infected in group 2 (placebo).
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λ1(t, v)/λ2(t, v) in v— but not in t . Since �̂k(dt, v) and λ̂k(t) approximately “track” each other in t ,
the nonparametric test process can reduce the noise from perturbations of λ̂1(t)/λ̂2(t) in t , whereas the
semiparametric test process cannot dampen this noise.

The small simulation study under non-proportional hazards, with H0 true with (β1, β2) = (1.0, 1.0),
(0.5, 0.5), or (0.25, 0.25), demonstrates (as predicted from the theory) that the semiparametric tests are
not valid when the marginal proportional hazards condition is not met. The empirical sizes of the tests
frequently missed 0.05 by an amount more than 2 or 3 Monte Carlo standard deviations (see supplemen-
tary Table 2 available at Biostatistics online). Finally, the point and interval estimators of VEc(36, v)
performed well, with details given in Section C of the supplementary material available at Biostatistics
online.

6. APPLICATION

We apply the methods to the data from the VaxGen trial described in Section 1. The 32 infected subjects
with a missing HIV sequence (and hence a missing mark) were excluded from the analysis.
Figure 1 shows box plots of the 3 amino acid percent mismatch distances of the infecting HIV viruses
to the nearest virus (MN or GNE8) represented in the tested vaccine. The testing procedures were imple-
mented using the same weight functions Hn(·) and wV (·), kernel K (·), and procedures for optimal band-
width selection and tail correction that were used in the simulations. The p-values were approximated
using 10 000 Monte Carlo simulations. The mean integrated squared error-optimized bandwidths bk for
the estimated hazards of infection λ̂1(·) and λ̂2(·) were b1 = 1.83 months and b2 = 2.10 months. For the

Fig. 1. The top panel shows box plots of amino acid distances in HIV gp120 between the infecting viruses and the
nearest vaccine strain MN or GNE8, for the 3 studied HIV distances. The bottom panel shows p-values of the studied
tests.
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Fig. 2. For the neutralizing face core distances, the top-left panel shows the observed test process L
np
n (t, v) and the

other panels show 8 randomly selected realizations of the simulated null test process L
np∗
n (t, v). The value 0 of

L
np∗
n (t, v) is found as the value present at t = 0.

neutralizing face core distances, the 4 tests of H0
0 : VE(t, v) = 0 gave p-values spanning 0.05 to 0.32 (Fig-

ure 1(d)), with Û 1
2 rejecting H0

0 at the level 0.05. Based on this evidence (albeit weak) that VE(t, v) �= 0,
we go on to test H0: VE(t, v) = VE(t). Neither nonparametric test rejected H0 (Figure 1(d)). The pro-
portional hazards assumption seemed reasonable based on a goodness-of-fit test (p = 0.35), justifying
the semiparametric tests of H0, which gave nonsignificant results (Figure 1(d)). To illustrate the graphical
procedure, Figure 2 shows the test process Lnp

n (t, v) together with 8 randomly selected realizations of the
null test process Lnp∗

n (t, v), using a unit weight process Hn(·) = 1. The maximum absolute deviation of
Lnp

n (t, v) in t is larger than that for all but one of the null test processes. Figure 1(e) and (f) shows p-values
of the tests for the other 2 distances, which all exceeded 0.05.

With bandwidths bv1 and bv2 separately optimized using 2-fold cross-validation, we next estimated
VEc(36, v) and VEdc(36, v) (Figure 3). The VEc(36, v) curves are estimated with reasonable precision
at mark values v not in the tail regions, and VEdc(36, v) is estimated with reasonable precision for v not
in the left tail, with precision increasing with v . For neutralizing face core distances, the estimates of
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Fig. 3. The left panels show point and 95% confidence interval estimates of VEc(36, v) = 1 − F1(36, v)/F2(36, v)
versus the HIV gp120 amino acid distance between the infecting viruses and the nearest vaccine antigen MN or GNE8,
for the 3 studied HIV distances, with bandwidths (bv1, bv2) = (0.096, 0.092), (0.10, 0.10), (0.10, 0.10) for (a), (b),
(c). The right panels show corresponding point and interval estimates of VEdc(36, v) = 1 − P(T1 � 36, V1 � v)/
P(T2 � 36, V2 � v). The dashed horizontal line is the overall vaccine efficacy estimate V̂Ec

(36) = 0.048.
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VEc(36, v) and VEdc(36, v) in the regions of precision diminished with viral distance, suggesting that the
closeness of match of amino acids in the exposing strain versus vaccine strain in the core amino acids may
have impacted the ability of the vaccine to stimulate protective antibodies that neutralized the exposing
strain. This nonsignificant trend is intriguing because this distance has the soundest biological rationale—
3-dimensional structural analysis has demonstrated that the amino acid positions used for this distance
constitute conserved neutralizing antibody epitopes (Wyatt and others, 1998).

7. CONCLUDING REMARKS

Nonparametric and semiparametric methods have been developed for testing and estimation of relative
risks taking into account a continuous mark variable observed only at uncensored failure times and for
evaluating the relationship between the relative risk and the mark. We showed that if the mark-specific
relative risk varies with the mark, then a standard Cox model test of a unit hazard ratio (ignoring the mark)
is less powerful (and sometimes much less) than the newly developed nonparametric procedures that test
the null hypothesis H0

0 : λ1(t, v)/λ2(t, v) = 1 of a unit mark-specific hazard ratio. This finding raises the
novel idea to consider accounting for the mark variable in secondary hypothesis tests in clinical trials for
which there are strong reasons to suspect that the mark-specific relative risk varies in the mark. Among
the statistics developed for testing H0

0 , we recommend Û 1
2 if the mark-specific relative risk is thought to

vary strongly with the mark, and Û 1
1 otherwise.

For testing dependency of the mark-specific relative risk on the mark, H0 : λ1(t, v)/λ2(t, v) = λ1(t)/
λ2(t), the simulations suggest that the nonparametric procedures perform better than their semiparametric
counterparts that assume proportional marginal hazards. The test based on Û np

1 is recommended. The
results also suggest that at least 100–200 failure events in the control group are needed to achieve high
power to detect moderate departures from H0. Furthermore, to achieve high power it is necessary that the
trial population is highly exposed to HIV and the exposing HIVs have wide variation in mark values. As
such a consideration for trial design is selecting sites with broad pathogen sequence diversity, which can
increase generalizability of the trial results as well as conferring greater power for testing H0

0 and H0.
Although the methods were motivated by a particular scientific problem (the question in HIV vac-

cine efficacy trials of if and how efficacy of the tested vaccine varies with the genetic distance of the
infecting HIV strain), we emphasize that they provide a general solution to the 2-sample survival analysis
problem with a continuous mark variable, which may have many applications. An appeal of the proce-
dures developed here is that they are based on a mark-specific version of the widely applied and well-
understood Nelson–Aalen-type nonparametric MLE and naturally extend the scope of methods that have
been developed for competing risks data with discrete (cause-of-failure) marks. Code for implementing
the procedures is available upon request.
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