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Summary. Assessing per-protocol treatment efficacy on a time-to-event endpoint is

a common objective of randomized clinical trials. The typical analysis uses the same

method employed for the intention-to-treat analysis (e.g., standard survival analysis)

applied to the subgroup meeting protocol adherence criteria. However, due to po-

tential post-randomization selection bias, this analysis may mislead about treatment

efficacy. Moreover, while there is extensive literature on methods for assessing causal

treatment effects in compliers, these methods do not apply to a common class of trials

where a) the primary objective compares survival curves, b) it is inconceivable to assign

participants to be adherent and event-free before adherence is measured, and c) the

exclusion restriction assumption fails to hold. HIV vaccine efficacy trials including the

recent RV144 trial exemplify this class, because many primary endpoints (e.g., HIV

infections) occur before adherence is measured, and nonadherent subjects who receive

some of the planned immunizations may be partially protected. Therefore, we develop

methods for assessing per-protocol treatment efficacy for this problem class, consid-

ering three causal estimands of interest. Because these estimands are not identifiable



from the observable data, we develop nonparametric bounds and semiparametric sensi-

tivity analysis methods that yield estimated ignorance and uncertainty intervals. The

methods are applied to RV144.

Key words: As-treated; Bounds; Causal inference; Exclusion restriction; Ignorance

region; Intention to treat; Principal stratification; Selection bias; Survival analysis.

1. Introduction

Over the past 30 years, millions of individuals have acquired HIV and the global

rate of new infections remains high. Unfortunately, the development of an HIV vac-

cine has been difficult with clinical trials not yielding promising results. However, a

recent community-based, individually-randomized, multicenter, double-blind, placebo-

controlled clinical trial of 16,395 HIV negative volunteers in Thailand (the RV144 ‘Thai

trial’) supported that an HIV vaccine regimen had partial efficacy to reduce the risk of

HIV infection (Rerks-Ngarm et al. 2009). This trial administered four injections of a

recombinant canarypox vector vaccine (or placebo) at the Week 0, 4, 12, 24 study vis-

its, plus two injections of a recombinant glycoprotein 120 subunit vaccine (or placebo)

at the Week 12, 24 study visits, and monitored participants for the primary endpoint of

HIV infection from entry until the final study visit at 3.5 years. While the Thai trial’s

finding of partial efficacy generated great enthusiasm as the first positive finding from

an HIV vaccine efficacy trial, it also generated confusion, because the results on vac-

cine efficacy appeared to differ depending on whether the analysis utilized the modified

intention-to-treat (MITT) or per-protocol (PP) cohort, where the MITT cohort was

all randomized subjects HIV negative at baseline (determined via blinded procedures),

and the PP cohort was the subset of the MITT cohort that tested HIV negative at the

Week 24 study visit and received all 6 study injections at the Week 0, 4, 12, 24 study

visits within pre-specified allowable visit windows. With vaccine efficacy (V E) defined

as the percent reduction in the cumulative probability of HIV infection diagnosis by
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39 months post-randomization (vaccine versus placebo), estimated based on Kaplan-

Meier estimates, the MITT result was V̂ E = 31%, 95% CI 0% to 51%, p = 0.04 and the

PP result was V̂ E = 25%, 95% CI -16% to 51%, p = 0.19. While the point estimates

were fairly close to one another and hence there was little evidence for different effects,

nonetheless many observers expressed concern that V E was apparently lower in the

PP cohort.

Due to randomization, the comparator groups in the MITT analysis are guaranteed

to have balanced baseline prognostic factors on average, such that the MITT analysis

provides consistent estimation of a causally-interpretable V E parameter, namely the

percent reduction in the cumulative risk of infection if everyone were assigned vaccine

compared to if everyone were assigned placebo. On the other hand, the comparator

groups in the PP analysis are subsets of randomized subjects whose membership is

determined conditional on post-randomization variables, resulting in possible selection

bias (Rosenbaum, 1984), such that the PP analysis does not necessarily assess a causal

effect of vaccination. Rather, it assesses a mixture of the effect of vaccine assignment

and imbalanced prognostic factors created by conditioning on qualification into the PP

cohort. The PP analysis included 24% fewer subjects and 31% fewer primary endpoint

events than the MITT analysis. Table 1 summarizes the reasons why MITT subjects

failed to qualify for the PP cohort. The rate of nonadherence to study injections was

significantly higher in the vaccine than placebo group (24% versus 21%, Chi-squared

test p < 0.001), possibly due to a higher rate of reactogenicity in the vaccine group

(79% versus 59%) (Rerks-Ngarm et al. 2009).

As discussed in Gilbert et al. (2011), opinions varied on the interpretation of the

results, ranging from discounting the PP analysis because only the MITT analysis

provides an asymptotically unbiased answer to a question of clear interest (typically

statisticians), to discounting any inference about positive vaccine efficacy because one

would expect the vaccine to work better in those who received all of the immunizations
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Table 1: Culling of the MITT Cohort to Form the PP Cohort in the RV144 Thai Trial∗

Reason for Exclusion from the PP Cohort MITT Vaccine MITT Placebo
Diagnosed with HIV by the week 24 visit 5/8197 (0.06%) 10/8198 (0.12%)
Not diagnosed with HIV by the week 24
visit but nonadherent (A = 0)

Dropped out before week 24 visit 67/8197 (0.82%) 70/8198 (0.85%)
Reached week 24 visit HIV negative but
nonadherent to vaccination visits: 1949/8197 (23.8%) 1752/8198 (21.4%)
All 4 with ≥ 1 outside window 749 671
Received 3 vaccinations 80 68
Received 2 vaccinations 81 76
Received 1 vaccination 146 134
Received 0 vaccinations 2 4
Other reasons (mainly outside window) 891 799

Total Culled Out 2021/8197 (24.7%) 1832/8198 (22.3%)
∗Group-imbalances in prognostic factors for HIV infection could arise due to

differences (by treatment assignment) in probabilities of any of the events (1) HIV
infection diagnosis by the Week 24 visit, (2) dropout by the Week 24 visit, or (3)

reaching the Week 24 visit at-risk but nonadherent to the vaccinations.

(typically non-statisticians). In our view, the former interpreters are correct that the

problematic interpretation of the PP analysis renders it of marginal value, whereas

the latter interpreters are correct that, were V E in vaccine-adherent subjects to be

assessed in a more meaningful way, it would indeed add value.

To improve upon the standard analysis of V E in the PP cohort, an analytic method

that adjusts for subject factors known to predict PP cohort membership and HIV in-

fection (such factors may cause selection bias) should be applied (e.g., see Tsiatis et

al. 2008), which in addition to correcting for bias can improve statistical power by

leveraging prognostic factors. Moreover, because some biasing factors may be unmea-

sured, the sensitivity of results to such factors should also be investigated. However,

existing approaches to sensitivity analysis do not directly apply to vaccine efficacy tri-

als, or, more generally, to two-arm randomized trials of treatments where the primary

objective compares survival curves, some participants experience the primary endpoint

before adherence is evaluated, and some subjects have partial adherence (implying
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that the exclusion restriction assumption is implausible; see Section 3 for the defini-

tion and interpretation of this assumption in our context). Therefore in this article we

develop methods for this class of trials. The methods apply to most vaccine efficacy

trials, given that almost all such trials assess per-protocol V E (Horne, Lachenbruch,

and Goldenthal, 2001), and typically multiple immunizations are administered over a

period of months during which disease events occur. Moreover, over the past several

decades the standard non-causal per-protocol analysis has been ubiquitously applied

to such efficacy trials, and this work aims to help improve the standard approach by

adding causal assessment.

This manuscript is organized as follows. In Section 2 we define notation and three

PP treatment effect estimands, and place the current work in the context of previ-

ously developed methodology for evaluating causal effects in compliers. In Section 3

assumptions are given that help identify the estimands under four different assumption

sets. In Sections 4 and 5 we describe non- and semi-parametric methods for inference

including techniques for estimating ignorance and uncertainty intervals. The meth-

ods are developed under multiple assumption sets so that practitioners may tailor the

sensitivity analysis approach to their particular trial; where stronger assumptions are

warranted the estimated ignorance and uncertainty intervals will tend to be narrower.

In Section 6 we apply the methods to the Thai trial. The methods are implemented

using the sensitivityPStrat package in R available on CRAN and our complete analysis

code is posted at the second author’s website.

2. Notation, Per-Protocol Estimands, and Problem Context

Consider a two-group randomized trial, wherein subjects are randomly assigned to

treatment Z = 1 or Z = 0 (in our motivating example Z = 1 is vaccine and Z = 0 is

placebo) and are followed for the primary time-to-event endpoint (typically a disease

event). Let T be the time from randomization until the disease event and C be the
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censoring time, such that X = min(T, C) and ∆ = I(T ≤ C) are observed. Let A

be an indicator of adherence/compliance to assigned treatment defined based on study

visits between randomization through time τ0. For example, in the Thai trial, study

injections were scheduled at Week 0, 4, 12, 24 visits, and A = 1 was defined as receipt

of all planned injections within the pre-specified allowable visit windows. Note that

A = 1 for Z = 1 subjects indicates appropriate receipt of vaccination injections whereas

A = 1 for Z = 0 subjects indicates appropriate receipt of placebo injections. We treat

A as undefined if T ≤ τ0, denoted by A = ∗, and assume the data are iid observations

Oi = (Zi, Xi,∆i, Ai), i = 1, · · · , n.

The population of interest for inference is disease-free and adherent up to τ0. Thus,

the PP cohort of interest is {i : Ti > τ0, Ai = 1}, and we define PP = I(T > τ0, A = 1).

Let SPPobs
z (t) ≡ P (T > t|Z = z, T > τ0, A = 1) be the survival function in the PP

cohort if assigned treatment Z = z for t ≥ τ0, and F PPobs
z (t) ≡ 1 − SPPobs

z (t). Also

let Sτ0obs
z (t) ≡ P (T > t|Z = z, T > τ0) and F τ0obs

z (t) ≡ 1 − Sτ0obs
z (t). It is widespread

in clinical trials to measure per-protocol treatment efficacy by a contrast in SPPobs
1 (t)

and SPPobs
0 (t), which does not measure a causal effect. Below we define three survival

causal effect (SCE) estimands that account for adherence/compliance.

The first estimand of interest is based on the literature for assessing causal treat-

ment effects in “always compliers,” “always infected,” or “always survivors” (Angrist,

Imbens, and Rubin, 1996; Frangakis and Rubin, 2002; Shepherd, Gilbert, and Lumley,

2007; Shepherd, Gilbert, and Dupont, 2011, henceforth SGD). Let T (z), C(z), X(z),

∆(z), A(z) be the potential outcomes of T, C,X,∆, A under assignment Z = z for z =

0, 1. Let Sz(t) ≡ P (T (z) > t), Fz(t) ≡ 1−Sz(t), and PP (z) ≡ I(T (z) > τ0, A(z) = 1),

and set ppz ≡ P (PP (z) = 1). For x, y ∈ [0, 1] let h(x, y) be a known contrast function

satisfying h(x, x) = 0 and h(x1, y1) ≤ h(x2, y2) for all x1 ≤ x2 and y1 ≥ y2, such as

h(x, y) = x− y or 1− (1− x)/(1− y).
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With the always-compliers approach, the survival causal effect estimand is

SCEAPP (t) ≡ h(SAPP
1 (t), SAPP

0 (t)) for t ≥ τ0, (1)

where SAPP
z (t) ≡ P (T (z) > t|PP (1) = PP (0) = 1) for z = 0, 1. The estimand

SCEAPP (t) measures the causal treatment effect in “always per-protocol” (APP ) sub-

jects, {PP (1) = PP (0) = 1}, i.e., subjects who would survive to τ0 under both treat-

ments and would be compliant to whatever they were assigned. One appeal of this

estimand is that always compliers may be persuaded to follow a treatment policy.

The second survival causal effect estimand of interest is

SCEASA1(t) ≡ h(SASA1
1 (t), SASA1

0 (t)) for t ≥ τ0, (2)

where SASA1
z (t) ≡ P (T (z) > t|T (1) > τ0, T (0) > τ0, A(1) = 1) for z = 0, 1, which

evaluates “always survivors” (AS) to time τ0 who would be adherent under Z = 1.

This estimand differs from SCEAPP (t) by measuring treatment efficacy in those ad-

herent to treatment 1, regardless of whether they would adhere to treatment 0. This

subpopulation is of interest because, once a treatment is licensed, treatment decisions

and policies will largely be based on the predicted effect of that treatment for those

who take it, whereas adherence to a control preparation may no longer be relevant.

Follmann (2000) and Loeys and colleagues cited below studied the same subpopula-

tion of “would-be treatment compliers.” We view the APP and ASA1 estimands as

complementary, each of interest in its own right and capturing different information.

While there is a rich literature for assessing causal treatment effects in always

compliers or would-be treatment compliers, most papers have not accommodated an

outcome subject to censoring, and, among those that do, an assumption is made that

renders the method inapplicable in our context. Cuzick et al. (2007) developed a struc-

tural proportional hazards model (SPHM) for estimating a hazard ratio estimand in

the APP subpopulation; however, they assume adherence status A is known at ran-

domization. Closer to our setting in assuming A is measured after randomization,
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Loeys and Goetghebeur (2003) and Loeys, Goetghebeur, and Vandebosch (2005) de-

veloped an SPHM for estimating a hazard ratio estimand in the ASA1 subpopulation

assuming all-or-none or time-constant adherence and A(0) = 1 for all subjects, in which

case the method equivalently applies to the APP subpopulation. This work does not

apply to our setting because it assumes the exclusion restriction, and because we are

specifically interested in comparing survival curves, which allows assessing treatment

efficacy over time and avoids the built-in selection bias of hazard ratios (Hernán, 2010).

Baker (1998) and Nie, Cheng, and Small (2011) developed nonparametric likelihood

estimation-based approaches for the APP estimand, but, in requiring the exclusion

restriction, they also do not apply. SGD provided an applicable approach for the APP

estimand (1) that does assume the exclusion restriction, and a novel contribution of

this article is to extend SGD to new identifiability assumption sets that are sometimes

reasonable in double-blinded randomized trials.

The third survival causal effect estimand we study is

SCEPP1(t) ≡ h(SPP1
1 (t), SPP1

0 (t)) for t ≥ τ0, (3)

where SPP1
z (t) ≡ P (T (z) > t|PP (1) = 1) for z = 0, 1, which evaluates the PP cohort

under treatment 1. This estimand addresses the question: “What is the treatment

efficacy for the subpopulation that would satisfy the PP-criteria if assigned treatment

1?” We are unaware of statistical methods for this estimand, perhaps in part because

the estimand in a sense favors treatment 1, as by definition SPP1
1 (τ0) = 1, and hence

treatment 1 starts out at least as good as treatment 0. Moreover, when T (1) and T (0)

are not perfectly correlated, it is easy to find examples where there is no marginal causal

treatment effect on T , but there is an expected beneficial treatment effect SPP1
1 (t) >

SPP1
0 (t) for all t > τ0 (see Supplementary Materials, Section 1). Despite this issue,

we include this estimand because the per-protocol cohort under study can be directly

observed for the treatment 1 group, and it addresses a question of interest for treatment
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1 PP subjects: “Compared to their observable survival experience, what would their

survival experience have been had they been assigned treatment 0?”

3. Assumption Sets

Throughout we make the “base set” of assumptions made for randomized clinical

trials: Stable Unit Treatment Values (SUTVA), Ignorable Treatment Assignment (Z ⊥

T (1), T (0), C(1), C(0), A(1), A(0)), and Random Censoring (T (z) ⊥ C(z) for z = 0, 1),

where ⊥ denotes independence. SUTVA states that potential outcomes for each subject

i are unrelated to the assignment Zj of other subjects and that there are not multiple

versions of treatment. We also consider additional assumptions involving the initial

study period through τ0, which will be utilized to help identify the estimands.

Survival Monotonicity (SM): P (T (1) ≤ τ0 < T (0)) = 0

Adherence Monotonicity (AM): P (A(1) = 1, A(0) = 0|T (1) > τ0, T (0) > τ0) = 0

Equal Adherence (EA): P (A(1) = A(0)|T (1) > τ0, T (0) > τ0) = 1

SM states that individuals who would survive beyond τ0 if assigned Z = 0 would

also survive beyond τ0 if assigned Z = 1. Examples of trials where SM may hold

are placebo-controlled trials and non-inferiority trials. AM states that for individuals

surviving beyond τ0 under both assignments, those who would adhere under assignment

Z = 1 would also adhere under assignment Z = 0. Adherence requires retention and

receipt of treatment through τ0, such that AM assumes that all subjects retained and

adherent through τ0 under Z = 1 would also be retained and adherent through τ0 under

Z = 0. For a double-blinded trial, differential drop-out and adherence would likely be

due to differential side effects, such that AM is plausible if side effects are as or more

likely for Z = 1 than for Z = 0. Here the double-blinding may be crucial, as it implies

there should not be less adherence in the control group due to a preference to receive

treatment. The stronger assumption EA states that all subjects retained and adherent
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under one assignment would also be so under the other. While this is implausible for

trials of treatments with serious side effects, it may be plausible for double-blinded

trials of non-toxic interventions in healthy populations (e.g., prevention trials).

We consider four types of assumption sets under which sensitivity analysis tech-

niques are developed: (A) base set; (B) base set plus AM; (C) base set plus (SM,

AM); (D) base set plus (SM, EA). These sets posit increasingly stringent assumptions.

SM, AM, and EA can be rejected based on data (e.g., SM is rejected if a test indicates

S1(τ0) < S0(τ0) in any baseline subgroup), but they cannot be fully verified, given

that they must hold for every individual. Supplementary Table 1 describes the basic

principal strata (Frangakis and Rubin, 2002) formed based on T (1), T (0), A(1), A(0),

as well as the subpopulations defining the estimands under the assumption sets.

Given the relatedness of our problem with causal inference for compliers, it is note-

worthy that we do not consider the exclusion restriction assumption that is commonly

made. In our context this assumption is expressed as P (T (1) = T (0)|T (1) > τ0, T (0) >

τ0, A(1) = A(0) = 0) = 1, i.e., the treatment has no effect in individuals non-adherent

under each treatment assignment. This assumption may be plausible in settings with

all-or-none adherence, for which A(1) = 0 indicates no receipt of treatment whatsoever.

However, in vaccine trials, several immunizations are planned and many subjects with

A(1) = 0 receive some or even all immunizations (as for the Thai trial, see Table 1),

and hence could have a beneficial vaccine effect on infection (i.e., T (1) > T (0)). Also,

unlike SM, AM, EA, the exclusion restriction would require making an assumption

about the time period after τ0.

4. Semiparametric Sensitivity Analysis and Nonparametric Bounds

We develop semiparametric modeling approaches to sensitivity analysis for each

estimand under each assumption set, which use a fixed sensitivity parameter(s) γ (not

identifiable from the observed data and the base set of assumptions) within a specified
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region Γ; accordingly S#
1 (t, γ), S

#
0 (t, γ), and SCE#(t; γ) are indexed by γ ∈ Γ, where

# denotes APP , ASA1, or PP1. We also develop nonparametric bounds, obtained by

setting the sensitivity parameter(s) to extreme values. Our approach follows Robins

(1997) and Vansteelandt et al. (2006), where each estimand is nonparametrically iden-

tified once the sensitivity parameter(s) γ indexing the full data law M(γ) defined by

modeling restrictions is fixed, and the goal is inference on the estimand under the union

model M(Γ) = ∪γ∈ΓM(γ), assuming the true value γ0 of γ lies in Γ.

4.1. Estimands SAPP
1 (t) and SAPP

0 (t).

Assumption set A. As noted above, we will adapt the general sensitivity analysis

method of SGD for making inferences about the APP estimand. The base set of

assumptions plus the following three selection models (and the observed data) identify

SAPP
1 (t) and SAPP

0 (t):

B.1: P (PP (1) = 1|PP (0) = 1, T (0) = t) = w0(t;α0, β0) for t > τ0, where w0(t;α0, β0) =

G0 {α0 + h0 (t; β0)}, β0 is a fixed and known parameter, G0 (·) is a known cdf, α0 is an

unknown parameter, and for each β0, h0 (t; β0) is a known function of t.

B.2: P (PP (0) = 1|PP (1) = 1, T (1) = t) = w1(t;α1, β1) for t > τ0, where w1(t;α1, β1) =

G1 {α1 + h1 (t; β1)}, β1 is a fixed and known parameter, G1 (·) is a known cdf, α1 is an

unknown parameter, and for each β1, h1 (t; β1) is a known function of t.

B.3: πAPP ≡ P (PP (1) = PP (0) = 1) is fixed and known.

B.1 models the dependency of PP (1) on the failure time T (0) in the {PP = 1, Z =

0} subgroup, and B.2 posits a similar model with the treatment assignments swapped.

The parameters γ = (β0, β1, πAPP ) are not identified by the observed data; they are

sensitivity parameters, treated as known in a single analysis and varied over a range

of values to form a sensitivity analysis (Scharfstein, Rotnitzky, and Robins, 1999).

Following SGD, we specify each wz(t;αz, βz) for z = 0, 1 with a modified inverse logit
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function,

wz(t;αz, βz) = [1 + exp{−αz − βzmin(t, τ)}]−1 , (4)

where τ > τ0 is some number less than or equal to the maximum length of follow-up.

The minimum of t and τ is used instead of t to avoid parametric assumptions about

SAPP
1 (t) and SAPP

0 (t) beyond the support of the data. Based on (4), β0 is the log

odds ratio of meeting the PP-criteria under treatment Z = 1 per unit increment of

T (0) for subjects who meet the PP-criteria under treatment Z = 0. This parameter

is interpreted for per-protocol placebo recipients with different infection times if not

vaccinated, T (0), which reflects their risk for infection. As such, β0 = 0 implies that

the odds of being per-protocol if vaccinated is not associated with infection risk in per-

protocol placebo recipients. If β0 > 0 (β0 < 0), then the odds of being per-protocol if

vaccinated are higher among per-protocol placebo recipients at lower (higher) risk for

infection, i.e., with longer (shorter) infection times. The parameter β1 has a parallel

interpretation for per-protocol vaccine recipients.

Models B.1 and B.2 may be equivalently expressed as pattern mixture models,

which give the sensitivity parameters alternative interpretations that may be preferred

by some practioners. For example, with weight (4), B.1 can be re-expressed as

exp {β0t} =
Pr(T (0) = t|PP (1) = 1, PP (0) = 1)

Pr(T (0) = t|PP (1) = 0, PP (0) = 1)

πAPP

Pr(PP (1) = 0, PP (0) = 1)

for t ∈ (τ0, τ ], such that exp{β0} is the density ratio (comparing the APP and

{PP (1) = 0, PP (0) = 1} subpopulations) of infection at time t divided by this density

ratio at time t − 1. Thus β0 calibrates the discrepancy between the distributions of

T (0) for the APP and {PP (1) = 0, PP (0) = 1} subpopulations.

B.3 specifies the probability a subject is always per-protocol. Instead of specifying

πAPP , alternatively one could specify φAPP ≡ πAPP/pp1 = P (PP (0) = 1|PP (1) = 1).

Under B.1 and B.2, for z = 0, 1

P (T (z) ≤ t|PP (1) = PP (0) = 1) =

∫ t
τ0
wz(s;αz, βz)dF

PPobs
z (s)

∫
∞

τ0
wz(s;αz, βz)dF PPobs

z (s)
. (5)
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Furthermore, algebra shows that

∫
∞

τ0
wz(s;αz, βz)dF

PPobs
z (s) = πAPP/ppz, (6)

and therefore

SAPP
z (t) = 1−

ppz
πAPP

∫ t

τ0
wz(s;αz, βz)dF

PPobs
z (s), for z = 0, 1. (7)

Once β0, β1, πAPP are specified, α0 and α1 are identified based on (6), such that SAPP
0 (t)

and SAPP
1 (t) are identified.

Under the base set of assumptions alone, nonparametric bounds for SAPP
z (t) are

achieved by setting πAPP to its smallest possible value and βz to −∞ and ∞, i.e.,

wz(t) = I(t ≤ qπAPP /ppz
z ) and wz(t) = I(t ≥ q1−πAPP /ppz

z ), where qaz is the ath percentile

of F PPobs
z (·), for z = 0, 1. Define πmin ≡ max{0, pp0 + pp1 − 1}, the smallest possible

value of πAPP . If πmin = 0, then the bounds for SAPP
z (t) are the uninformative values

0 and 1. If πmin > 0, then SAPP
z,lo (t) ≤ SAPP

z (t) ≤ SAPP
z,hi (t), where

SAPP
z,lo (t) ≡ max

{
0, 1−

F PPobs
z (t)

πmin/ppz

}
;SAPP

z,hi (t) ≡ min

{
ppz
πmin

−
F PPobs
z (t)

πmin/ppz
, 1

}
. (8)

for t ≥ τ0 and z = 0, 1. These bounds determine the nonparametric bounds for

SCEAPP (t) for any contrast function h(·, ·) satisfying the properties described in Sec-

tion 2, equal to

h
(
SAPP
1,lo (t), SAPP

0,hi (t)
)
≤ SCEAPP (t) ≤ h

(
SAPP
1,hi (t), SAPP

0,lo (t)
)

for t ≥ τ0. (9)

These bounds are nonparametric because no parametric modeling assumptions are used

in expressing the bounds or in the procedures for estimating them (e.g., B.1–B.3 are

not needed). The Supplementary Materials (Section 2) contain a proof of (8).

Assumption set B (add AM). The same approach is used when AM is added, with

the only difference being that the amount of possible post-randomization selection bias

is reduced. In particular, πAPP is now constrained between max{0, S0(τ0) + pp1 − 1}
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and min{pp0, pp1}. In addition, in B.2 the weight function w1(t;α1, β1) = P (A(0) =

1|T (1) > τ0, T (0) > τ0, A(1) = 1, T (1) = t)P (T (0) > τ0|T (1) > τ0, A(1) = 1, T (1) = t),

and by AM the first conditional probability is known to be one.

The nonparametric bounds for the APP estimand under assumption set B are as

in (8) and (9) with πmin modified to πmin = max{0, S0(τ0) + pp1 − 1}, and are always

at least as narrow as those under assumption set A. If there is nonadherence under

treatment z = 0 such that pp0 < S0(τ0), then πAPP has a narrower range via the extra

assumption AM, yielding narrower bounds (if πmin > 0). This occurs in the Thai trial

example.

Assumption set C (add SM, AM). Again the same approach is used as under as-

sumption sets A and B, with the amount of possible post-randomization bias fur-

ther reduced by the constraint max{0, S0(τ0) + pp1 − S1(τ0)} ≤ πAPP ≤ {pp1, pp0}.

Under SM, PP (1) = A(1), which simplifies the interpretation of β0 to reflect the

association of infection risk of per-protocol placebo recipients with adherence if vac-

cinated. The nonparametric bounds are the same as above with πmin replaced with

πmin = max{0, S0(τ0) + pp1 − S1(τ0)}.

Assumption set D (add SM, EA). By EA, w0(t;α0, β0) in B.1 equals P (T (1) >

τ0|T (0) > τ0, A(0) = 1, T (0) = t), which by SM equals one. Therefore SAPP
0 (t) =

SPPobs
0 (t). In addition, by EA model B.2 is expressed as w1(t;α1, β1) = P (T (0) >

τ0|T (1) > τ0, A(1) = 1, T (1) = t), which we again model with the modified inverse

logit function (4). SM and EA together identify πAPP as πAPP = pp0. Therefore only

B.2 among the models (B.1, B.2, B.3) is needed, and simple calculations show that

SAPP
1 (t) = 1−

pp1
pp0

∫ t

τ0
w1(s, α1, β1)dF

PPobs
1 (s) for t ≥ τ0, (10)

where α1 is the solution of (6) with z = 1 and πAPP = pp0. The nonparametric bounds

for SAPP
1 (t) (for t ≥ τ0) are given by (8) with πmin = pp0 and z = 1.

Nonparametric bounds under alternative assumption sets. Zhang and Rubin (2003)
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and Chiba (2012) derived nonparametric bounds for the average causal effect in “al-

ways survivors” under different assumptions than SM, AM, and EA. While we chose our

assumption sets to be maximally relevant for vaccine trials, these alternative assump-

tions may also be plausible for some vaccine trials, and yield alternative nonparametric

bounds for SCEAPP (t). Seven alternative assumption sets, their interpretations and

plausibility for RV144, and the corresponding nonparametric bounds are described in

Supplementary Materials (Section 3 and Supplementary Table 2).

4.2. Estimands SASA1
1 (t) and SASA1

0 (t).

Assumption set A. The ASA1 estimands are identified using the same models as

above, except the event {PP (0) = 1} is replaced with {T (0) > τ0}:

B.1’: P (PP (1) = 1|T (0) > τ0, T (0) = t) = w0(t;α0, β
′
0).

B.2’: P (T (0) > τ0|PP (1) = 1, T (1) = t) = w1(t;α1, β
′
1).

B.3’: πASA1 ≡ P (PP (1) = 1, T (0) > τ0) is fixed and known.

Again we model each wz(·) as in (4). The sensitivity parameters γ = (β ′
0, β

′
1, πASA1)

have different interpretations than those under assumption set A; for example β ′
0 is

the log odds ratio of meeting the PP-criteria under Z = 1 per unit increment of the

failure time for subjects with T > τ0 under Z = 0. The parameter πASA1 is constrained

between max{0, S0(τ0) + pp1 − 1} and min{pp1, S0(τ0)}. Algebra shows that

∫
∞

τ0
w0(s;α

′

0, β
′

0)dF
τ0obs
0 (s) = πASA1/S0(τ0),

∫
∞

τ0
w1(s;α

′

1, β
′

1)dF
PPobs
1 (s) = πASA1/pp1,

SASA1
0 (t) = 1− (S0(τ0)/πASA1)

∫ t

τ0
w0(s;α

′

0, β
′

0)dF
τ0obs
0 (s),

SASA1
1 (t) = 1− (pp1/πASA1)

∫ t

τ0
w1(s;α

′

1, β
′

1)dF
PPobs
1 (s).

Nonparametric bounds for SCEASA1(t) are constructed similarly as for SCEAPP (t),

replacing F PPobs
0 (t) with F τ0obs

0 (t) and pp0 with S0(τ0). With πmin ≡ max{0, S0(τ0) +

pp1 − 1}, the bounds for SASA1
z (t) are informative if πmin > 0, and for t ≥ τ0 equal

SASA1
0,lo (t) ≡ max

{
0, 1−

F τ0obs
0 (t)

πmin/S0(τ0)

}
;SASA1

0,hi (t) ≡ min

{
S0(τ0)

πmin

−
F τ0obs
0 (t)

πmin/S0(τ0)
, 1

}
,
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SASA1
1,lo (t) ≡ max

{
0, 1−

F τ0obs
1 (t)

πmin/pp1

}
;SASA1

1,hi (t) ≡ min

{
pp1
πmin

−
F τ0obs
1 (t)

πmin/pp1
, 1

}
.

Assumption sets B, C, D. Under AM included in B, C, and D, SAPP
z (t) = SASA1

z (t),

such that the identical methods described above for the APP estimand apply.

4.3. Estimands SPP1
1 (t) and SPP1

0 (t).

The base set of assumptions identify SPP1
1 (t) (by SPPobs

1 (t)), but not SPP1
0 (t).

Assumption set A. We write

SPP1
0 (t) = P (PP (1) = 1|T (0) > t)S0(t)/pp1, (11)

and use a selection bias model parallel to B.1 and B.1’:

B.1”: P (PP (1) = 1|T (0) = t) = w0(t;α
′′
0, β

′′
0 ),

where again we specify w0(·) as modified inverse-logit as in (4).

Straightforward calculation using (11) and B.1” shows that

SPP1
0 (t) = 1−

1

pp1

∫ t

0
w0(s;α

′′

0, β
′′

0 )dF0(s), (12)

where α′′
0 is the solution to

∫
∞

0 w0(s;α
′′
0, β

′′
0 )dF0(s) = pp1.

Since SPP1
1 (t) is identifed from the base set of assumptions, nonparametric bounds

for SCEPP1(t) derive from nonparametric bounds for SPP1
0 (t). By similar derivations

used in the proof of (8) in the Supplementary Materials, the bounds equal

max

{
0, 1−

[1− S0(t)]

pp1

}
≤ SPP1

0 (t) ≤ min

{
S0(t)

pp1
, 1

}
for t ≥ τ0. (13)

The width of the bounds increases with the risk of early failure or nonadherence. In

many applications, S0(t)/pp1 > 1 for most or all t, such that the upper bound is one.

Assumption set B (add AM). Under AM, SPP1
0 (t) = P (T (0) > t|PP (1) = 1, H(0) =

1) for t ≥ τ0, where {H(0) = 1} = {T (0) ≤ τ0} ∪ {PP (0) = 1}. With F
H(0)=1
0 (·) the

distribution of T (0) conditional on H(0) = 1, we use the selection model:

B.2”: P (PP (1) = 1|H(0) = 1, T (0) = t) = w0(t;α
′′
0, β

′′
0 ) for t ≥ 0, such that

SPP1
0 (t) = 1−

P (H(0) = 1)

pp1

∫ t

0
w0(s;α

′′

0, β
′′

0 )dF
H(0)=1
0 (s) for t ≥ τ0. (14)
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Simple calculations show that P (H(0) = 1) = 1 − S0(τ0) + pp0 and F
H(0)=1
0 (t) =

(
1− S0(τ0) + pp0F

PPobs
0 (t)

)
/ (1− S0(τ0) + pp0) for t ≥ τ0. With w0(·) again the inverse-

logit function, β ′′
0 is the log odds of PP (1) = 1 given H(0) = 1 and T (0) = t versus

t− 1. In many applications {H(0) = 1} ≈ {PP (0) = 1} due to a much larger number

of subjects in {PP (0) = 1} than in {T (0) ≤ τ0}, in which case β ′′
0 has an interpretation

very close to that of β0 for the APP estimand under assumption set A. (This close

approximation attains in the Thai trial, where p̂p0 = 0.777 and 1− Ŝ0(τ0) = 0.0012.)

The nonparametric bounds are SPP1
0,lo (t) ≤ SPP1

0 (t) ≤ SPP1
0,hi (t), where

SPP1
0,lo (t) = max

{
0, 1−

(
1− S0(τ0) + pp0F

PPobs
0 (t)

)
/pp1

}
,

SPP1
0,hi (t) = min

{
pp0

(
1− F PPobs

0 (t)
)
/pp1, 1

}
for t ≥ τ0. (15)

The bounds (15) are at least as sharp as those computed under the base set, (13).

Assumption set C. When SM is added, the methods are identical to those under

assumption set B. Under assumption sets B and C, SPP1
0 (t) = SAPP

0 (t) = SASA1
0 (t)

if πAPP = pp1, which occurs if PP (1) = 1 implies PP (0) = 1. Moreover, SPP1
1 (t) =

SAPP
1 (t) = SASA1

1 (t) if πAPP = pp1 or PP (0) ⊥ T (1)|PP (1) = 1 (i.e., β1 = 0 in B.2).

Assumption set D (add SM, EA). Under AM, SPP1
0 (t) = SAPP

0 (t)πAPP/pp1. SM

and EA imply πAPP = pp0 and SAPP
0 (t) = SPPobs

0 (t), such that SPP1
0 (t) is identified by

SPP1
0 (t) = SPPobs

0 (t) (pp0/pp1) for t ≥ τ0, (16)

and there are no sensitivity parameters. Therefore under SM and EA, the non-causal

estimand SCEPPobs(t) ≡ h(SPPobs
1 (t), SPPobs

0 (t)) is corrected to a causal one through

the adjustment constant pp0/pp1, which is ≤ 1. The formula shows how the correction

depends on differential rates of early failure and adherence. Under assumption set D,

SAPP
0 (t) = SASA1

0 (t) = SPP1
0 (t) = SPPobs

0 (t) if and only if pp0 = pp1, which is testable.

Table 2 lists the four assumption sets for each of the three estimands.
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Table 2: Assumption Sets Under Which the Sensitivity Analysis May Be Performed
Assumption Sets: S. Pars. γ Γ (Maximum Possible– Nonparametric Bounds) Γ (Maximum Plausible∗)

Estimand SCEAPP (t; γ)

A. B.1, B.2, B.3 β0, β1 −∞ < βz < ∞ 1
B
≤ exp(βz t̄) ≤ B z = 0, 1

πAPP max{0, pp0 + pp1 − 1} ≤ πAPP ≤ min{pp0, pp1} pp1pp0 ≤ πAPP ≤ min{pp0, pp1}

B. B.1, B.2, B.3 β0, β1 −∞ < βz < ∞ 1
B
≤ exp(βz t̄) ≤ B z = 0, 1

AM πAPP max{0, S0(τ0) + pp1 − 1} ≤ πAPP ≤ min{pp0, pp1} same as maximum possible range

C. B.1, B.2, B.3, β0, β1 −∞ < βz < ∞ 1
B
≤ exp(βz t̄) ≤ B z = 0, 1

SM, AM πAPP max{0, S0(τ0) + pp1 − S1(τ0)} ≤ πAPP ≤ min{pp0, pp1} same as maximum possible range

D. B.2, SM, EA β1 −∞ < β1 < ∞ 1
B
≤ exp(β1t̄) ≤ B

Estimand SCEASA1(t; γ)

A. B.1’, B.2’, B.3’ β ′
0, β

′
1 −∞ < β ′

z < ∞ 1
B
≤ exp(β ′

z t̄) ≤ B z = 0, 1
πASA1 max{0, S0(τ0) + pp1 − 1} ≤ πASA1 ≤ min{S0(τ0), pp1} pp1S0(τ0) ≤ πASA1 ≤ min{S0(τ0), pp1}

B. B.1’, B.2’, B.3’, β ′
0, β

′
1 −∞ < β ′

z < ∞ 1
B
≤ exp(β ′

z t̄) ≤ B z = 0, 1
AM πASA1 same as in B. for APP same as in B. for APP

C. B.1’, B.2’, B.3’, β ′
0, β

′
1 −∞ < β ′

z < ∞ 1
B
≤ exp(β ′

z t̄) ≤ B z = 0, 1
SM, AM πASA1 same as in C. for APP same as in C. for APP

D. B.2’, SM, EA β ′
1 −∞ < β ′

1 < ∞ 1
B
≤ exp(β ′

1t̄) ≤ B
Estimand SCEPP1(t; γ)

A. B.1” β ′′
0 −∞ < β ′′

0 < ∞ 1
B
≤ exp(β ′′

0 t̄) ≤ B

B. B.2”, AM β ′′
0 −∞ < β ′′

0 < ∞ 1
B
≤ exp(β ′′

0 t̄) ≤ B

C. B.2”, SM, AM β ′′
0 −∞ < β ′′

0 < ∞ 1
B
≤ exp(β ′′

0 t̄) ≤ B

D. SM, EA None N/A (Full Identifiability) N/A
∗B > 1 is a specified constant; t̄ is a specified interpretable time-increment such as 1 year or the fixed follow-up period.
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5. Maximum Likelihood Estimation and Uncertainty Intervals

We consider inference about the estimands SCE#(t). Estimators of SCE#(t; γ)

for a fixed value of the sensitivity parameter(s) γ are described in Section 5.1. Because

γ is not identifiable, we recommend reporting an estimated ignorance interval, i.e., a

set of point estimates ̂SCE
#
(t; γ) with γ varied over a selected region Γ. Ignorance

intervals express ambiguity about the parameter of interest due to partial identifia-

bility; in contrast, traditional confidence intervals (given a particular fixed γ) express

ignorance/ambiguity due to sampling variability only. Associated with ignorance re-

gions, in Section 5.2 we describe procedures for constructing uncertainty intervals that

incorporate imprecision due to sampling variability as well as to lack of identifiability.

5.1. Estimation of SCEAPP (t), SCEASA1(t), and SCEPP1(t).

Given fixed γ, for each estimand and assumption set, maximum likelihood estima-

tors (MLEs) of SCE#(t; γ) are constructed by plugging in MLEs for the quantities

given in Section 4. Kaplan-Meier estimates (nonparametric MLEs) can be used to es-

timate F PPobs
z (t), F τ0obs

z (t), and Fz(t), for z = 0, 1. MLEs for ppz are the proportion of

subjects assigned treatment z with PP (z) = 1. Estimation proceeds by fixing sensitiv-

ity parameters and then solving for unknown parameters. For example, for the APP

estimand under assumption set A, using (6) and fixing βz and πAPP , the MLE of αz is

the solution to
∫
∞

τ0
wz(s;αz, βz)dF̂

PPobs
z (s) = πAPP/p̂pz. Then, the MLE of SAPP

z (t; γ)

is obtained by plugging the MLEs into (7). The MLEs of the nonparametric bounds

are obtained by substituting MLEs into (8) and (9). Estimation of the other estimands

and under different assumption sets proceeds in a similar fashion.

As shown in Table 2, the sensitivity parameters π# are constrained by functions of

the identifiable parameters pp1, pp0, and S0(τ0). Therefore the data may contradict cer-

tain choices of π#, precluding estimation via plug-in MLEs in the above equations. Ac-

cordingly, we suggest using the MLEs of pp1, pp0, and S0(τ0) in the inequality bounds,

as listed in Supplementary Table 3. This approach is equivalent to re-parametrizing
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with an unconstrained sensitivity parameter (Supplementary Material, Section 3).

The data may violate an assumption that is nonetheless assumed. For example,

assumption set D implies pp0 ≤ pp1, but in the Thai trial p̂p0 > p̂p1. In such cases the

estimation procedure uses constrained MLEs; in this example, for the PP1 estimand,

p̂p0/p̂p1 is forced to unity such that ŜPP1
0 (t) = ŜPPobs

0 (t) by equation (16).

5.2. Estimated Ignorance Intervals and Uncertainty Intervals.

With Γ a specified region of sensitivity parameter values γ and γ0 ∈ Γ the true value,

we consider inference and uncertainty interval estimation for SCE#(t; γ0) for fixed t ≥

τ0. For each fixed γ ∈ Γ, the bootstrap can be used to estimate the variances of Ŝ#
z (t; γ)

and ̂SCE
#
(t; γ), as well as to construct percentile confidence intervals for S#

z (t; γ) and

SCE#(t; γ). To compute estimated ignorance and uncertainty intervals, we use the fact

that for each estimand and assumption set, ̂SCE
#
(t; γ) is monotone in γ. With one

sensitivity parameter such as γ = β1, monotonicity implies that the extreme estimates

̂SCE
#
(t; γ) are obtained by setting β1 to its extreme values. With three sensitivity

parameters such as γ = (β0, β1, πAPP ), monotonicity implies that the extreme estimates

̂SCE
#
(t; γ) are obtained by setting each of the three parameters to an extreme value;

for example, Section 4.1 described how to achieve this for the APP estimand. For a

given analysis [estimand, assumption set, contrast function h(·, ·)], suppose the values

γl and γu in Γ yield the minimum and maximum estimates ŜCE
#
(t; γ). The estimated

ignorance interval is computed as
[
ŜCE

#
(t; γl), ̂SCE

#
(t; γu)

]
. Supplementary Table

3 lists the data-dependent values of γl and γu to use in a standard plausible-range

sensitivity analysis that we propose in Section 5.3.

Following Vansteelandt et al. (2006, Section 4.1), a (1 − α) × 100% pointwise un-

certainty interval is defined by random limits L#(t) and U#(t) satisfying

infγ∈ΓPM(γ)(L
#(t) ≤ SCE#(t; γ) ≤ U#(t)) ≥ 1− α,

where PM(γ) indicates that probabilities are taken under M(γ). Such intervals are of
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interest because they contain the true SCE#(t; γ0) with probability at least 1 − α.

Imbens and Manski (2004) and Vansteelandt et al. (2006, Section 4.1) provided a

method for obtaining estimated pointwise uncertainty intervals (henceforth EUIs), and

showed that the EUIs have asymptotically correct coverage under the assumptions that

( ̂SCE
#
(t; γl), ̂SCE

#
(t; γu))

T is asymptotically normal and γl and γu are independent

of the observed data law. If γl and γu are selected based on the observed data (as done,

for example, with our standard plausible-range sensitivity analysis proposed below),

then the bootstrap can be used to provide approximately correct EUIs (Vansteelandt

et al. 2006, page 971); the bootstrap accounts for the sampling variability in γl and

γu by recomputing γl and γu within each bootstrap iteration (see Section 3 in the

Supplementary Material). Specifically, a bootstrap estimated (1− α)× 100% EUI for

SCE#(t; γ0) is constructed as the union of the two bootstrap percentile (1−α)×100%

1-sided confidence intervals for SCE#(t; γ) computed at γ = γl and at γ = γu, re-

spectively. Here the significance level α does not need to be divided by two provided

SCE#(t; γu) > SCE#(t; γl) (Imbens and Manski, 2004), which occurs for all of the

proposed sensitivity analysis methods because γl 6= γu and SCE#(t; γ) is strictly mono-

tone in γ. Based on similar derivations used in Shepherd, Gilbert, and Lumley (2007),

asymptotic normality of ( ̂SCE
#
(t; γl), ̂SCE

#
(t; γu))

T holds under simple conditions

(provided in Supplementary Table 4), and their simulation studies plus those of SGD

demonstrate satisfactory performance of the bootstrap, including nominal coverage

probabilities of confidence intervals given fixed values of γ.

The null hypothesis H inf
0 : infγ∈Γ|SCE#(t; γ)−SCE∗| = 0 for some fixed constant

SCE∗ can be tested based on the EUI, by rejecting H inf
0 if the (1 − α) × 100% EUI

excludes SCE∗. The corresponding 2-sided p-value equals the smallest α such that the

(1−α)×100% EUI excludes SCE∗. This testing procedure has size bounded above by

α, and thus has the desirable 1:1 correspondence with the EUIs. Alternatively, H inf
0

can be tested directly using the infimum test of Todem et al. (2010), and their test
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inverted to obtain an (1 − α) × 100% EUI for SCE#(t, γ0), namely the set of SCE∗

where H inf
0 is not rejected at significance level α.

5.3. A Suggested Standard Sensitivity Analysis.

Given that it is often challenging to obtain consensus among experts about the plau-

sible range of sensitivity parameters, it may be useful to develop standards that, while

somewhat arbitrary, can be uniformly applied and make causal per-protocol analyses

more objective and interpretable. We suggest one possible standard, where the odds

ratios exp(β0) and exp(β1) are varied between 1/B and B per increment t̄ in failure

time T (0) and T (1), where the scalar t̄ and the bound B are selected by subject matter

experts based on the context of the study (following the approach of Shepherd, Gilbert,

and Mehrotra, 2007). For example, t̄ may simply be a 1-year interval. The plausible

upper bounds for πAPP and πASA1 are set at min{p̂p0, p̂p1} and min{Ŝ0(τ0), p̂p1}, re-

spectively, the MLEs of the maximum possible value. For assumption set A we suggest

using the more plausible lower bound for πAPP of p̂p1p̂p0, corresponding to the MLE of

πAPP if PP (0) and PP (1) were independent (negative correlation seems highly implau-

sible). Similarly, we suggest using p̂p1Ŝ0(τ0) as the plausible lower bound for πASA1.

Under assumption sets B and C we suggest setting πAPP and πASA1 at the MLEs of

the minimum possible values, which vary by assumption set, since AM and SM greatly

constrain the ranges for πAPP and πASA1 (values listed in Supplementary Table 3). We

also suggest reporting the nonparametric bounds as worst-case scenarios.

6. Example

We apply the above methodology to evaluate per-protocol vaccine efficacy in the

Thai trial, using the vaccine efficacy contrast function h(x, y) = 1 − (1 − x)/(1 −

y). The protocol definition of adherence required receiving all six immunizations at

the four scheduled immunization visits within allowable visit windows by τ0 ≡ 6.21

months after randomization. The trial followed subjects for HIV infection up to the
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terminal study visit at 42 months, and we focus on a time-point near the end of

evaluation, t = 39 months. Thus, we denote the estimands of interest as V E#(39; γ0) =

SCE#(39; γ0). First we illustrate application of all of the methods, and second we

evaluate the plausibility of each extra assumption, and, based on this assessment,

conduct a substantively relevant sensitivity analysis. We use the yearly scale t̄ = 1 to

define the maximum plausible selection bias odds ratio of 1/B or B, with B = 1.5. We

construct EUIs and tests for H inf
0 using the approach described in Section 5.2.

The choice of B is important as it strongly affects the width of ignorance inter-

vals and EUIs. Given the authors experience in HIV vaccine efficacy trials, and our

lack of involvement in RV144 until after the primary publication, we counted our-

selves as suitable experts to specify B. Because the infection rates by τ0 were very

low, per-protocol status is approximately equivalent to adherence status, such that B

essentially measures the maximal association, within individuals adherent under the

assigned treatment arm, of their infection times with adherence under the opposite

treatment arm. Our choice of B = 1.5 reflects our belief that infection time had low

association with adherence under the un-assigned arm in subjects already known to

be adherent under the assigned arm. Moreover, our choice of relatively small B was

influenced by the fact that infection times are the outcome of many constituent factors

including demographics, host genetics, sexual behavior, and prevalence/characteristics

of HIV in sexual partners, and these factors had limited heterogeneity in this general

population study with low representation of extremely high risk groups and with low

observed heterogeneity in infection risk (Rerks-Ngarm et al. 2009). Given the chal-

lenge in selecting B, we recommend reporting results for both the plausible range and

nonparametric bounds sensitivity analyses.

Figure 1 shows estimated ignorance intervals and 95% EUIs for V E#(39; γ0) for the

three estimands under each assumption set. The methods are applied using both the

maximum possible sensitivity parameter ranges (nonparametric bounds) and the max-
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imum plausible ranges according to the suggested standard (semiparametric sensitivity

analysis). For the nonparametric bounds approach, for each estimand and under as-

sumption sets A, B, and C, the range of point estimates is large, extending to negative

infinity. However, under assumption set D the estimated ignorance interval collapses

to a single point, the point estimate under the naive analysis that uses the estimator

h(ŜPPobs
1 (39), ŜPPobs

0 (39)). The plausible-range results show that the AM assumption

(but not SM) leads to substantially narrower estimated ignorance intervals and EUIs.

In addition, under assumption sets A, B, and C, these intervals are much narrower for

the plausible-range sensitivity analysis than for the nonparametric bounds analysis,

showing a major benefit from leveraging plausible assumptions.
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Figure 1. Estimated ignorance intervals (thick segments) and 95% EUIs (thin segments)

for (a) V EAPP (39; γ0), (b) V EASA1(39; γ0), (c) V EPP1(39; γ0) under assumption set A

(base set), B (base set + AM), C (base set + SM, AM), D (base set + SM, EA). Left

(right) vertical lines are nonparametric bounds (semiparametric bounds with plausible

ranges), where arrows indicate extension to −∞ (to a negative number < -1.0).

Using assumption set A, Figure 2 shows the point and 95% confidence interval

estimates for V EAPP (39; γ) as a function of the fixed sensitivity parameters γ =
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(β1, β0, φAPP ), varied over the suggested standard plausible region Γ. As indicated by

the dark shaded region, for the analysis to demonstrate significant benefit V EAPP (39; γ)

> 0, the sensitivity parameters must satisfy φAPP < 0.95 and (exp(β1), exp(β0)) in the

upper-left triangle with large values of exp(β1) and small values of exp(β0). Using esti-

mates p̂p1, Ŝ0(τ0), and Ŝ1(τ0), and under assumption sets B and C, φAPP is constrained

to be within [0.9984, 1] and [0.9992, 1], respectively. Hence, a sensitivity analysis under

B or C corresponds approximately to Figure 2, φAPP = 1.0. The reduced variability of

the vaccine efficacy estimate over the range induced by AM is apparent.
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Figure 2. Contour plots of V̂ E
APP

(39; γ) for γ = (β1, β0, φAPP ) varying over the

plausible region Γ, under assumption set A. Dark shaded regions indicate γ values at

which V EAPP (39; γ) is significantly > 0. φAPP = 0.77 corresponds to PP (1) ⊥ PP (0).

When φAPP = 1, results only vary with β0; thus the OR1 parameter is irrelevant in

the lower-middle contour plot, and the lower-right plot shows V̂ E
APP

(39; γ) (γ = β0)

with 95% confidence intervals as a function of exp(β0).

Figure 3 shows the parallel results for V EASA1(39; γ), indicating significant benefit
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V EASA1(39; γ) > 0 for values of exp(β ′
0) less than about 0.7. The odds ratio exp(β ′

0)

being less than 1 reflects the premise that placebo recipients with longer infection

times have lower odds of being per-protocol under vaccine than placebo recipients with

shorter infection times. This would be plausible if higher risk per-protocol subjects

are less likely to be per-protocol if randomized to the other arm than lower risk per-

protocol subjects. Thus if there is any evidence for a beneficial vaccine effect for the

ASA1 subgroup, it is highly sensitive to small amounts of selection bias.
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Figure 3. Contour plots (left and middle) of V̂ E
ASA1

(39; γ) for γ = (β ′
1, β

′
0, φASA1)

varying over the plausible region Γ, under assumption set A. Dark shaded regions

indicate γ values at which V EASA1(39; γ) is significantly > 0. The right plot shows

V̂ E
ASA1

(39; γ) with 95% confidence intervals as a function of exp(β ′
0) when φASA1 = 1.

Figure 4 shows the results for V EPP1(39; γ) under assumption set A and under B

or C, demonstrating significant benefit V EPP1(39; γ) > 0 for all values of exp(γ) =

exp(β ′′
0 ) <≈ 1.2. Because β ′′

0 has a similar interpretation as β0 for the APP estimand,

the significant effect is robust under a premise that per-protocol placebo recipients

with shorter infection times would not have a higher odds of being per-protocol under

vaccine than per-protocol placebo recipients with longer infection times.
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Figure 4. Estimates of V EPP1(39; γ) and 95% confidence intervals for γ = β ′′
0 values

varying over the plausible range Γ, under assumption set A (base set; left panel) and

under assumption set B or C (base set + AM or base set + SM, AM; right panel).

Next, we evaluate the plausibility of the identifiability assumptions. The consis-

tency part of SUTVA holds because the trial is randomized and only one vaccine reg-

imen was administered in a uniform manner, and the no interference part of SUTVA

is plausible because the study sites were geographically dispersed across Thailand, the

annual HIV incidence was low (0.2%), and only 1–2 clusters of infected subjects were

identified. Ignorable treatment assignment is plausible because there were no recorded

problems with the validity of the randomization. Random censoring is difficult to eval-

uate, but the impact of any violation of this assumption is minimized by the high rates

of participant retention (10% drop-out by the terminal visit). SM is plausible, given

that fewer subjects were observed to be infected by τ0 in the vaccine than placebo

group (5 versus 10), with Ŝ1(τ0) = 0.9994 and Ŝ0(τ0) = 0.9988. AM is plausible but

EA is not, given that, among those with an HIV negative test result at the Week 24

visit, the adherence rate was higher in the placebo than vaccine group: 5565 of 7317

(76.1%) versus 5285 of 7234 (73.1%) adherent (Chi-squared test p < 0.0001).

Assumption set C is therefore the strongest plausible assumption set, and we will
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interpret the results based on this set. From Figure 1, the estimated ignorance interval

(95% EUI) for per-protocol causal vaccine efficacy is 18% to 23% (-30% to 51%) for

each of the APP and ASA1 estimands, such that there is little evidence for positive

vaccine efficacy after accounting for potential selection bias. In contrast, the estimated

ignorance interval (95% EUI) for V EPP1(39; γ0) is 34% to 39% (4% to 95%), indicating

evidence for significant positive vaccine efficacy among those who were (or would have

been) per-protocol when randomized to vaccine.

The hypothesis tests based on EUIs yield 2-sided p-values of 0.52 for the APP and

ASA1 estimands and 0.03 for the PP1 estimand.

To assess per-protocol vaccine efficacy over time, we repeated the above analyses for

a grid of fixed times t shortly after τ0 through to τ (9 to 39 months). Supplementary

Figures 1–12 show the estimated ignorance intervals and 95% EUIs for V E#(t; γ0) and

for the constituent survival curves S#
z (t; γ0), under each assumption set. Under sets

B–D, the estimates of V E#(t) decline over time for each estimand, with borderline

significant V E#(t) > 0 through about 12–15 months for the plausible range analysis.

In conclusion, the causal sensitivity analysis provides a more interpretable assess-

ment of per-protocol vaccine efficacy than the non-causal result originally reported in

Rerks-Ngarm et al. (2009). Moreover, it provides a more complete account of uncer-

tainty than the original analysis, by accounting for partial non-identifiability as well as

for sampling variability. The original estimate of non-causal per-protocol vaccine effi-

cacy was V̂ E = 25%, 95% CI -16% to 51%, p = 0.19, compared to the causal estimates

of V̂ E = 18% to 23% (for the APP and ASA1 estimands), with 95% EUI -30% to

51%, p = 0.52. Thus, the causal analysis provides less evidence for beneficial vaccine

efficacy through 39 months in subjects adherent to the full set of immunizations, in

both the magnitude and precision of the point estimates. However, the time-dependent

analysis indicates marginally significant positive per-protocol vaccine efficacy over the

first 12–15 months after accounting for plausible levels of potential selection bias.
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For the APP estimand, the estimated ignorance intervals and EUIs are very wide

under assumption set A, for both the semiparametric and nonparametric bounds, rais-

ing the question as to what are scenarios where the estimates will be sufficiently nar-

row to make precise conclusions. In general, both bounds will be narrow when the

per-protocol probabilities and the event rates are high in both groups, in which case

there is little room for selection bias. In the rare event setting such as for RV144,

the semiparametric bounds may still be informatively precise if the per-protocol rates

and numbers of events are large. To demonstrate this, Supplementary Figure 13 shows

the identical analysis presented in Figure 1 for a second HIV vaccine efficacy trial

with a very similar study design, Vax004 (Flynn et al. 2005), which had much higher

per-protocol rates (92.6% and 93.0% in the vaccine and placebo groups) and 3-fold

more events (368 HIV infections). The semiparametric estimated ignorance intervals

and EUIs are much narrower than for RV144, demonstrating the impact of higher

per-protocol rates and greater event numbers, respectively. However, the nonparamet-

ric bounds under assumption set A are still very wide, illustrating that in rare event

settings the nonparametric bounds are typically uninformative.

7. Discussion

In clinical trials with survival time endpoint, the standard analysis of per-protocol

treatment efficacy contrasts estimates of SPPobs
1 (t) and SPPobs

0 (t). Imbalances in pre-

dictors of the survival endpoint between the comparator groups {PP = 1, Z = 1}

and {PP = 1, Z = 0} may easily occur, which renders the analysis non-causal and

potentially misleading. Therefore, it is of interest to assess alternative per-protocol

estimands that measure a causal effect of treatment. However, such estimands are

not identifiable from the observable data plus standard assumptions, which makes a

sensitivity analysis generally warranted, and motivates this work.

We defined three survival causal effect (SCE) per-protocol vaccine/treatment effi-
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cacy parameters of interest– SCEAPP (t), SCEASA1(t), SCEPP1(t)– and procedures for

drawing inferences about these estimands under different assumption sets and specified

regions for fixed sensitivity parameters. The estimands have different interpretations

and hence different utilities. The APP estimand may be particularly useful for guiding

future research and policies for using the vaccine/treatment, given that always com-

pliers (i.e., always per-protocol subjects) are those who can be expected to adhere to

the treatment, and the level of efficacy in this subgroup is an important input pa-

rameter for models that predict the treatment’s effectiveness in various settings where

the adherence pattern may differ from that observed in the clinical trial. The ASA1

estimand measures the treatment effect for the always-survivors who would take treat-

ment, regardless of their adherence under control, and may also be a useful input into

treatment effectiveness models. Compared to the APP estimand, the ASA1 estimand

has advantage of identifiability under weaker assumptions, and disadvantage that the

ASA1 subpopulation has a less straightforward interpretation, equal to the union of

the always per-protocol subpopulation and the always-survivors who would adhere to

Z = 1 but not to Z = 0. Reporting results for both estimands may be useful for

assessing whether and to what extent treatment efficacy is associated with adherence

under Z = 0. For blinded trials of non-toxic treatments, the estimands should be

approximately equal, and in fact are exactly equal under the Adherence Monotonicity

assumption that adherence to Z = 1 implies adherence to Z = 0. The PP1 estimand

is least useful for evaluating treatment efficacy because by construction it favors the

Z = 1 arm, such that its main value may be for assessing the amount of efficacy received

for the observable subgroup of subjects who are per-protocol under active treatment

Z = 1. An appeal of the PP1 estimand is that Z = 1 subjects in the PP1 cohort can

be directly observed, and hence directly studied and characterized.

For trials with objective to evaluate per-protocol treatment efficacy, it is valuable

to routinely report a sensitivity analysis of these causal estimands, at least for the
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APP and ASA1 estimands. Given that estimated uncertainty intervals are wider than

confidence intervals, for trials where assessment of per-protocol treatment efficacy is a

key objective, it may be prudent to increase the sample size accordingly, recognizing

that increasing the sample size alone may not be sufficient to obtain narrow uncertainty

intervals if the probability of being per-protocol is low.

Ideally, the per-protocol sensitivity analysis would account for potential bias due

to unmeasured variables, after adjusting for potential bias due to observed variables.

The sensitivity analysis methods developed in this article could be extended to adjust

for observed covariates in a number of ways. One modification would be based on

the fact that, for all assumption sets and for both the nonparameteric bounds and

semiparametric sensitivity analysis approaches, the causal estimands SCE#(t; γ0) are

functions of two types of terms: (1) fixed values of sensitivity parameters and models of

selection bias; and (2) survival curves SPPobs
z (t), Sτ0obs

z (t), and Sz(t) that are identified

from the observed data under the base set of assumptions. Therefore, the inferential

methods described in Section 5 may be modified to adjust for covariates by replacing the

Kaplan-Meier estimates of the above survival curves with covariate-adjusted estimates,

for example via the method described in Hernán (2010).

Supplementary Materials

Title: Supportive results The supportive results include proofs, additional tables

and figures describing the methods and results, and complete computer code.
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