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Efficient Trial Designs for Studying Combination Antiretroviral Treatments in
Patients with Various Resistance Profiles

Peter Gilbert, Victor DeGruttola, and Scott Hammer Department of Biostatistics, Harvard School of Public Health; Harvard
Medical School, Boston, Massachusetts

Selecting antiretroviral therapies for human immunodeficiency virus type 1–infected persons is
complicated by the availability of a vast number of potentially useful drug combinations and by
extensive variation among patients in their resistance to various drugs. AIDS clinical trials have
used designs in which a handful of drug regimens in a few patient classes can be compared. Here
is proposed implementation of innovative designs with factorial structure that permit assessment
of many treatment arms and patient classes in a single trial; when and how they can be appropriately
used are discussed. These designs are efficient, permit systematic investigation of correlations be-
tween genetic mutations and in vivo drug resistance, and provide insight into important drug
interactions in people that conventional designs are unable to provide. Through creative application
of these designs, identification of superior drug combinations and the science of understanding in
vivo joint drug dynamics and genotypic resistance will progress at an optimum pace.

The development of powerful antiretroviral therapies has of combination antiretroviral trials provides many opportunities
for application of these efficient designs.dramatically changed the expectations and capabilities of the

treatment of human immunodeficiency virus type 1 (HIV-1) When only a handful of combination HIV-1 therapies was
available for efficacy testing, it was rarely appropriate to con-infection—it may be possible to suppress virus permanently

in some individuals [1–4]. Because numerous antiretroviral duct a factorial trial. This is because at least 4 treatment arms
must be arranged in a particular configuration, and for mostdrugs in multiple drug classes are under development or have

recently been approved, there are hundreds of potential drug sets of arms that fit this structure, at least 1 was known a priori
to be inferior to the others. For a typical example, in 1996combinations that may be effective. In addition, there are a

large number of important classifications of patients with regard Hoffmann-La Roche completed a 3-arm trial of saquinavir mo-
notherapy versus dideoxycytosine (ddC) monotherapy versusto treatment history and degree of resistance to various antiret-

roviral drugs. Due to limited resources, only a fraction of possi- saquinavir/ddC combination. A 2 1 2 factorial design would
require a placebo arm. Today, with the advent of hundreds ofble drug combinations in a fraction of patient classes can be

investigated in conventionally designed efficacy trials, even if possible drug combinations, there are many factorial configu-
rations for which equipoise holds.the primary end point is a surrogate marker, such as virologic

response. This motivates consideration of innovative trial de- Interactions of antiretroviral drugs are commonly studied in
the laboratory but not in the clinic, as nonfactorial trials do notsigns that facilitate efficacy assessment of many drug combina-

tions in many patient classes. In this paper, we argue the aptness have the capability of assessing in vivo interactions. Due to
special considerations of HIV-1 disease and its management,of factorial and related structured designs.

Factorial designs have been used extensively in agricultural knowledge of interactions in people might help in developing
combination therapies that meet their high promise of capablyand industrial experiments, and to a lesser degree in clinical

trials. Properly designed factorial trials answer two or more suppressing virus permanently or at least for long periods [6].
The central barrier to this treatment success is HIV-1’s rapidquestions at the price of one conventional nonfactorial trial and

provide insight into treatment interactions. An example is ISIS- evolution within a host and the resulting selection for drug-
resistant virus strains [7]. This dynamic nature of HIV-1 re-4, a randomized factorial trial that simultaneously assessed

three treatments for patients with suspected myocardial in- quires that sequences of drug combinations are judiciously
tailored to patients and that patients strongly adhere to thefarction: early oral captopril, oral mononitrate, and intravenous

magnesium sulphate [5]. We propose that the current climate demanding treatment regimen [8].
In this treatment context, there are several ways in which

knowledge of in vivo interactions would provide valuable guid-
ance for treatment selection and administration. For one, it is
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similarly for showing that enhanced bioavailability of saqui- ual drug effects. To illustrate a rule, consider two antiretrovi-
rals, A and B, and let absolute change in plasma HIV-1 RNAnavir by ritonavir translates into an ritonavir/saquinavir positive

clinical or virologic interaction. For patient management, a level from baseline to a prespecified follow-up time be the
efficacy end point. Suppose the effect of A(B) is to drop virusphysician’s knowledge that two drugs work better in combina-

tion than expected from their efficacy as individual agents will load by dA(dB) logs. One rule states that the treatments are
additive (positively interact) if the A/B combination drops virusdirect his or her emphasis on joint administration and adher-

ence. Further, knowledge of in vivo negative interactions would load by an amount equal to (more than) dA / dB logs. A
negative interaction occurs if A/B drops virus load by anhelp prevent administration of antagonistic combinations.

Understanding of the relationship between mutations in the amount less than dA / dB logs. A different addition rule would
give a different interaction definition, so that the concept ofHIV-1 genome and in vivo drug resistance and cross-resistance

would also greatly assist tailoring of therapies. Since genetic drug interaction in people depends entirely on the expectation
of how individual drug effects on the efficacy end point add.sequencing technology is advancing rapidly, there is a new

opportunity to systematically collect this knowledge and apply See [11, pp 1058–9] for further discussion on the inherent
model-dependency of treatment interactions.it as a primary guide in patient management. As we elucidate,

factorial and related designs are well suited for rapidly acquir- A drug interaction in one efficacy measure does not necessar-
ily translate into a drug interaction in a different efficacy mea-ing this understanding, because the effect of several patterns

of nucleotide or amino acid mutations on in vivo efficacy of sure. It depends on the model linking the two measures. To
illustrate this, consider efficacy defined by the capability ofmultiple drug regimens can be investigated in a single study.

Moreover, factorial designs permit assessment of interactions a protease inhibitor drug to render newly produced virions
noninfectious. Define respectively h0 and h* as the proportionbetween a mutation pattern class and a treatment class, which

can potentially reveal extremely important insights for tailoring of newly produced virions that are noninfectious before and
after drug administration, so that h Å (h* 0 h0)/(1 0 h0)treatment assignments. For example, if a mutation in the prote-

ase amino acid residue M-46 (to I or L) and a mutation in measures the efficacy of the administered drug relative to a
perfect drug. Since no available assay can directly measure theresidue V-82 (to A, F, or T) significantly negatively interact

with drug regimens A and B, in that A works well for those proportion of new virions rendered noninfectious, in order to
estimate h, it is necessary to use a viral dynamics model linkingwith the M-46 mutation but poorly for those with the V-82

mutation, and vice versa for B, a very clear signal is sounded. this drug efficacy mechanism to an observable efficacy end
point. Consider recent viral dynamics models. Perelson et al.’sClinical trials designed to systematically investigate genotypic

resistance patterns are keenly needed, as currently this informa- [12] popular model assumes a perfect drug (h Å 1), so that h
cannot be estimated. Wu et al. [13] developed a viral dynamicstion is accumulating via post hoc analysis of virologic failures

in individual antiretroviral trials. model similar to that of Perelson et al. [12], from which h can
be estimated if data on infectious virus load are available. TheirIn Factorial Designs (see below), we describe elementary

features of factorial and related structured designs and their model expresses the observable log change, d, in plasma HIV-
1 RNA concentrations from baseline to a prespecified follow-use in combination antiretroviral trials. We argue for imple-

mentation of these designs, not only because they provide a up time, t, as a function of h, t, and the clearance rates of free
virus (c) and productively infected T cells (d).systematic approach to evaluation of drug interactions and ge-

notypic resistance, but also because they require substantially How does this viral dynamics model relate definitions of drug
interaction on the two efficacy measures h and d? Considerfewer study subjects than conventional designs for comparisons

of particular drugs or mutation patterns within a class. We sensible definitions of interaction in h and d. If drug A has
efficacy hA Å 90%, and drug B has efficacy hB Å 50%, then acompare factorial and related designs to conventional designs,

both by their theoretical properties and by application to com- natural definition of additivity is that combination A/B has drug
efficacy hAB Å 95%. The general formula for additivity is thatpleted and recently proposed combination antiretroviral trials.
combination A/B has drug efficacy hAB Å hA / hB 0 hA * hB.
Define a drug interaction in d as above. As we elaborate in the

Drug Interactions in People
Appendix, under Wu et al.’s [13] viral dynamics model, these
two definitions correspond only if the clearance rates, c and d,Drug interactions are typically studied in the laboratory, de-

fined through concepts such as synergy. In people, an interac- and the plasma HIV-1 RNA measurement time, t, take particular
values. Thus, a natural and clearly interpretable definition oftion is defined relative to a measure of tangible drug efficacy.

For example, synergy in the laboratory may translate into syn- additivity for the observable efficacy end point, d, may corre-
spond to an arbitrary definition of additivity for the unobservableergy in the clinic [10]. Other measures are clinical (e.g., time

to AIDS-defining illness or death), virologic (e.g., suppression efficacy parameter, h, and vice versa. This highlights the inherent
model-dependency of relating interaction definitions on differentof plasma HIV-1 RNA level), or immunologic (e.g., increase

in CD4 cell count). For a given efficacy measure, interaction efficacy end points. More specifically, it suggests that viral dy-
namics models can be used to select a plasma HIV-1 RNAof two drugs is defined relative to a rule for addition of individ-
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with very good efficiency. For example, a treatment difference
between the two NNRTIs is assessed by comparing the results
from 200 subjects on NNRTI1 with those from the 200 subjects
on NNRTI2. Similarly, the main effect of PIs and NAs can be
assessed with 200 subjects per drug level.

The capability of the factorial trial to simultaneously assess 3
main effects has considerable advantages over the conventional

Figure 1. 2 1 2 1 2 factorial design with NNRTI1 (nonnucleoside nonfactorial approach, which would consist of three separate
reverse-transcriptase inhibitor 1) present in each arm and NNRTI2 one-factor-at-a-time trials, in which the experimental factors
present in each arm. PI, protease inhibitor; NA, nucleoside analogue.

(PIs, NAs, and NNRTIs) are varied one at a time, with the
remaining factors held fixed. Each individual trial provides an
estimate of the effect of a single drug class at selected fixed

measurement time so that an interaction in the observable mea- drug levels of the other drug classes. For this estimate to have
sure, d, reflects an interaction in the biologically meaningful broad clinical relevance, it is necessary to assume that the
parameter h. treatment effect would be the same in combinations with other

This paper aims to illustrate concepts rather than be exhaus- drugs in the other drug classes—that, over the ranges of current
tive, so henceforth we focus on the important case in which interest, the drugs act on the efficacy measure additively. How-
the primary end point is log drop, d, in plasma HIV-1 RNA ever, if the treatment effect is additive, the factorial design is
concentrations and treatment effects add on the scale for d much more efficient, and if there is nonadditivity, the factorial
defined above. design, unlike the one-factor-at-a-time design, if adequately

powered, can detect and estimate interactions that measure the
nonadditivity [16].Factorial Designs

To illustrate the gain in efficiency, suppose there are 200
subjects in the 2 1 2 1 2 factorial design, 25 per arm. ToIn this section we define the factorial design, describe its

elementary properties, and compare it to designs that have been obtain equal precision for the estimate of PI effect, the one-
factor-at-a-time trial would need to have 200 subjects, 100 forextensively used in antiretroviral trials for HIV-1 infection. See

[11] and [14] for further description of properties of factorial each PI level, with all observations made at some fixed levels
of NAs and NNRTIs. Similarly, two further trials of 200 sub-clinical trials. References [10] and [15] provide further discus-

sion of their application specifically to antiretroviral trials. jects would be required to study NAs and NNRTIs. Thus, to
give estimates of the main effects of the three drug classesWe have three main drug classes to investigate in combina-

tion: protease inhibitors (PIs), nucleoside analogues (NAs), and with the same precision as provided by the factorial design,
the one-factor-at-a-time design would require 600 subjects—nonnucleoside reverse-transcriptase inhibitors (NNRTIs).

These are factors in a factorial design. Particular drugs within a 3-fold increase.
Another advantage of a factorial design is that one can testa drug class are levels of the factor. A trial with factorial design

is one with simultaneous randomizations to the levels of each for and estimate the magnitude of interactions between drug
classes. In this example, there are three possible interactionsfactor. This allows investigation of multiple scientific questions

at no extra cost by decomposing the analysis of treatment between drug classes. For instance, consider PIs and NAs. The
standard measure of the strength of interaction is the differencedifferences into main effects of each factor and interaction

effects between factors. To illustrate, suppose we are interested between the average PI effect with the first NA and the average
PI effect with the second NA. It is simple to detect interactionsin two drugs in each drug class, labeled PI1, PI2, NA1, NA2,

NNRTI1, and NNRTI2. A 2 1 2 1 2 factorial design is formed graphically as illustrated by figure 2 of Example 1. The exis-
tence of each interaction and each main effect can be testedby crossing all possible drug choices in the three drug classes

(figure 1). Each subject is randomized to receive one of 8 triple for straightforwardly by an F test under standard assumptions
[17]. A central advantage of testing for interactions and maincombinations (i.e., simultaneously to one of the two drugs in

each class). For instance, 400 subjects could be entered in effects is that it is possible to disentangle if superiority of a
combination is due to main effects or positive drug interaction.random permuted blocks of 8, so that 50 individuals would

receive each triple combination. We now give an example of a completed nonfactorial trial
conducted by the AIDS Clinical Trials Group (ACTG) in whichAn advantage of the factorial design is symmetry—each

individual drug is given to half the subjects, and each double a factorial design would have been efficient and illuminating.
Example 1: hypothetical factorial trial based on ACTG 229combination to one-fourth of the subjects. Thus each subject’s

data contributes to many treatment comparisons. For example, and ACTG 116B/117. Clinical trial ACTG 229 compared zi-
dovudine/saquinavir, zidovudine/ddC, and zidovudine/saqui-there are 12 unique double combinations, and any pair of these

can be compared with 100 subjects per arm. More importantly, navir/ddC [18]. Consider the available efficacy measure of ab-
solute change in log plasma HIV-1 RNA concentrationsthe main effect of each of the three factors can be assessed
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Figure 2. Interaction plots of
mean change in plasma human im-
munodeficiency virus type 1 RNA
concentrations from baseline to
week 24, example 1. ZDV, zidovud-
ine; SQV, saquinavir; ddC, dideoxy-
cytosine.

(bDNA assay; Chiron, Emeryville, CA) from baseline to week in the 3-arm design three treatments can be compared pairwise,
in the factorial design treatment differences can be assessed24. If ACTG 229 had been designed as a 2 1 2 factorial trial,

including a zidovudine monotherapy arm, it would have been between an additional 3 pairs of arms, but the sample size has
only increased by a third.possible to assess the existence of an interaction between saqui-

navir and ddC. To mimic this, we constructed this arm by To illustrate graphically various interactions, suppose that
saquinavir and ddC interacted positively, so that the triple com-using plasma HIV-1 RNA data (bDNA assay; Chiron) from

the zidovudine monotherapy arm of ACTG 116B/117 [19]. bination zidovudine/saquinavir/ddC performed better than ex-
pected from the sum of the doubles zidovudine/saquinavir andAlthough this example lacks randomized control, it has partial

validity in that the two studies have similar patient populations zidovudine/ddC. Then the lines would be nonparallel and di-
verging, as illustrated in figure 2 (bottom left). Figure 2 (bottom(at least 4 months of prior treatment with zidovudine and CD4

cell counts in the range 50–300 copies/mL). To maximize their right) depicts a hypothetical negative interaction (antagonism),
indicated by crossing lines, in which ddC has a negative effectcomparability, subjects were sampled from ACTG 116B/117

according to the distribution of baseline CD4 cell count and with zidovudine and a positive effect with zidovudine/saqui-
navir.plasma HIV-1 RNA copy number for ACTG 229 subjects.

Figure 2 (top) displays the mean treatment response for the We give a second example based on recently proposed trials
to evaluate novel salvage regimens in people whose treatment4 groups, with 76, 76, 73, and 73 subjects on the arms. The

results are clear: triple therapy is superior to either double by PI fails.
Example 2: protease failure salvage trial. Although the PItherapy (P Å .0052 vs. zidovudine/saquinavir, P Å .0042 vs.,

zidovudine/ddC), the double therapies perform similarly, and era has brought with it remarkable improvements over pre-
viously available antiretroviral therapies, a substantial propor-zidovudine monotherapy is worse than any combination (P Å

.020 vs. zidovudine/saquinavir, P Å .019 vs. zidovudine/ddC, tion of PI-treated subjects do not maintain adequate viral sup-
pression. For subjects with protease failure, it is imperativeand P Å .0001 vs. zidovudine/saquinavir/ddC). The striking

feature of the analysis is that the lines in figure 2 (top) are that alternative regimens be developed. A number of studies,
including within the ACTG, have been initiated or are in devel-nearly perfectly parallel. This indicates the complete absence

of an interaction, showing that, given a zidovudine background, opment to try to address this issue utilizing combination regi-
mens that include approved and experimental dual PIs,saquinavir and ddC are additive (on the chosen scale) in their

effect of suppressing virus load. One interpretation is that sa- NNRTIs, and the acyclic nucleoside phosphonate reverse-tran-
scriptase inhibitor, adefovir. In this example, we discuss howquinavir and ddC work independently of one another without

interference. This type of scientific insight was not possible factorial designs might be appropriately used for a ‘‘salvage’’
trial, which compares novel combination regimens. In con-with the original design. Another advantage is that, whereas
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Figure 3. 2 1 2 1 2 factorial design with efavirenz (EFV) present in each arm (left) and nevirapine (NVP) present in each arm (middle).
Right, 2 1 2 1 2 factorial design missing cells B and F. PI, protease inhibitor; AMP, amprenavir; I, indinavir; N, nelfinavir; RTV, ritonavir;
SQV, saquinavir; ADV, adefovir; plac, ADV placebo.

structing treatment arms, we consider drugs proposed by groups factorial designs apply. We illustrate with the 2 1 2 1 2
factorial design discussed in Example 2. Some investigatorswithin the ACTG. As in some current proposals, suppose all

subjects receive the novel NA abacavir (also known as might be reluctant to add the fifth drug, adefovir, to a regimen
containing ritonavir/saquinavir, in which case arms B and F1592U89) and the novel NNRTI efavirenz (DMP-266). The

experimental PI amprenavir (141W94) will be included in some are unacceptable. In this case, there are still two 21 2 factorial
designs embedded within the remaining 6 arms, one comprisingarms.

Two classes of therapy failures are considered: those given arms A, C, E, and G and the other comprising arms C, D, G,
and H (figure 3, right). For each of these squares, 2 main effectsindinavir and those given nelfinavir. For indinavir failures, con-

sider the following two research questions: Which dual prote- and an interaction can be investigated. If another arm were
unacceptable, for instance, arm D or H, then the trial wouldase, ritonavir/saquinavir or amprenavir/nelfinavir, works best?

Does adding adefovir to the regimen help? These questions are have 5 arms, of which 4 still compose a 2 1 2 factorial design.
The key point is that in selecting treatment arms for inclusionalso of interest for nelfinavir failures, in which case the dual

protease amprenavir/nelfinavir is replaced by amprenavir/indi- in combination antiretroviral trials, it is prudent to search for
groups of arms that at least partially fit a factorial structure sonavir. Separate 2 1 2 factorial trials could be conducted for

indinavir failures and for nelfinavir failures, each with the capa- as much as possible can be learned at the cheapest price. We
discuss sample size issues for these designs below (Samplebility to test which dual protease works the best and whether

adefovir augments therapy, and to assess an adefovir/dual pro- Size Advantages of Factorial and Latin Square Designs).
If one assumes there are no drug class interactions, then fortease interaction.

Now consider indinavir and nelfinavir failures in the same many factorial designs, the mean treatment response of the
combination arms in the empty cells can be imputed, with thestudy. Then amprenavir in combination with indinavir or nelfi-

navir can be taken as a PI level, and a single 2 1 2 factorial same precision as for the filled cells [20]. It is usually unadvis-
able to make this assumption, as it requires an excellent under-trial stratified by indinavir or nelfinavir failure could be con-

ducted. Next, suppose a third randomization is of interest. For standing of joint in vivo drug dynamics. When the assumption
is valid, however, it permits ascertainment of treatment effectsinstance, subjects could be randomized to an NNRTI, efavirenz

or nevirapine, rather than all being assigned efavirenz. This of the unrepresented combinations.
creates a 2 1 2 1 2 factorial design with factors NNRTI
(efavirenz vs. nevirapine), dual PI (amprenavir/indinavir or nel-

Factorial and Related Structured Designs for Studyingfinavir vs. ritonavir/saquinavir), and adefovir (adefovir vs. ade-
Genotypic Resistancefovir placebo) (figure 3). A full analysis of 3 main effects and

3 interactions could be carried out as described for the design Investigations relating mutations in the HIV-1 genome to in
illustrated in figure 1. vivo drug resistance and cross-resistance have been limited to

exploratory analyses of virologic failures in particular clinical
trials, without systematic assessment. Due to the vast numberFactorial Designs with Missing Cells
of resistance profiles and drug combination options, we need
studies that facilitate systematic assessment of these correla-In practice, there are many sets of treatment combinations

that can be arranged in a factorial configuration. However, tions for many mutation patterns and drugs. A mutation pattern
is any representation of change in the HIV-1 genome that isbecause some of the combinations are not worth testing (e.g.,

zidovudine with stavudine, or ddI [dideoxyinosine] with ddC), of interest, such as a single-residue mutation (e.g., T-215-Y),
a combination of mutations (perhaps in some temporal se-there will be some empty cells. In this situation, benefits can

be reaped if the design contains factorial substructure. For quence), or any arbitrary delineation.
We illustrate through examples how structured designs facil-instance, there may be an all-cells-filled factorial substructure

within the full design for which the methods of analyzing itate systematic and efficient assessment of genotypic resis-
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tance. In the analysis of 29 phenotypically indinavir-resistant
HIV-1 isolates, Condra et al. [21] found that the relationship
between protease mutations and resistance is complicated and
difficult to fully elucidate. Mutations in at least 11 protease
amino acid residues were associated with resistance, so appar-
ently there are multiple resistance pathways. However, muta-
tions at positions 46 or 82 were found in all indinavir-resistant

Figure 4. Latin square trial designs for linking mutation patternsisolates, and the number of protease mutations correlated with
to drug resistance. Subjects are stratified into 9 (left) or 4 (right)

the magnitude of resistance, suggesting hypotheses about kinds
mutation pattern classes. Drug regimen A, B, or C is assigned to

of mutational patterns that are most predictive of loss of drug participants in stratum indicated by row and column. For example, in
efficacy. design at left, persons with mutation at 46 and£3 protease mutations

receive regimen A.Factorial designs might be useful for genotypic resistance
trials. For example, we might conduct a salvage trial for indi-
navir and nelfinavir failures with the 4 treatment arms in the
left or middle of figure 3. Consider a classification into two Instead of investigating two classes of mutation patterns and

one class of treatments, two drug classes (say, NAs and PIs) andpatterns of mutation: pattern I Å mutation at 82 but not at 46,
and pattern IIÅmutations at both 46 and 82. Enrolling subjects one class of mutation patterns could be investigated through a

Latin square design. This kind of design permits assessmentso that half have mutation pattern I and half have mutation
pattern II would permit systematic genotypic resistance assess- of which NA works the best for each mutation pattern, which

PI works the best for each mutation pattern, and which mutationment without increasing the sample size or compromising the
original objectives of the trial. With factorial designs, interac- pattern overall is most predictive of resistance.
tions between mutation pattern classes and drug treatment
classes can be investigated in the same way that interactions

Sample Size Advantages of Factorial and Latin Square Designs
between two drug classes are investigated. Results should be
interpreted more cautiously though, because mutational pattern Generally, in the absence of an appreciable negative interac-

tion, a factorial trial can detect meaningful main effect treat-is a classification factor rather than a randomization factor.
When more than one genetic classification factor is of inter- ment differences with small sample sizes. However, a factorial

design with high power to detect main effects will have sub-est, the simple factorial design may not be practical. A trial
with ‘‘Latin square’’ design (Latin square designs are com- stantially lower power to detect interactions (figure 5).

To illustrate these points concretely, consider the discussionmonly used in pharmacokinetic and dosing clinical trials for
many drugs, including antiretrovirals) could be conducted to in example 2 about the design of a salvage trial. Various trial

designs could potentially be used that have between 5 and 8test hypotheses about two classes of mutation patterns simulta-
neously and to compare salvage regimens. To illustrate, con- treatment arms and various degrees of factorial structure. We

compare the powers of competing designs to detect a 0.5 logsider one class of three indinavir-resistance mutation patterns:
mutation at 46 but not at 82, mutation at 82 but not at 46, and HIV-1 RNA change (treatment difference) in main and interac-

tion effects. To illustrate an observed set of treatment responsesmutations at both 46 and 82. Define another class of three
mutation patterns: £3 protease mutations, 4–6 protease muta- consistent with this difference, consider the 2 1 2 factorial

design depicted in figure 3 (left), and suppose there is a meantions, and §7 protease mutations. A 3 1 3 Latin square design
with these two mutation pattern classes as rows and columns response of 2.0 log for both amprenavir-containing arms (each

containing amprenavir/indinavir or amprenavir/nelfinavir) andand treatment regimens A, B, and C is depicted in figure 4
(left). Instead of randomly assigning three treatments to each 1.5 log for both ritonavir/saquinavir-containing arms. This

specifies no interaction, so that the dual PI main treatmentstratum (defined by row and column), only one treatment is
assigned, hence the number of cells is reduced from 27 to 9. effect is the difference between the responses for the two am-

prenavir cells (each with amprenavir/indinavir or amprenavir/The attraction of the design depicted in figure 4 is that it
permits investigation of multiple scientific questions with the same nelfinavir) and the two ritonavir/saquinavir cells, equal to 0.5

log. If the mean response of the four treatment combinationsnumber of subjects needed to investigate just one of these ques-
tions. First: Which treatment works best overall? Second and is 1.5 log for the upper-right cell and 1.0 log for the other three

cells, then the alternative is a 0.5 log positive interaction. Forthird: Does the extent of resistance vary by mutation patterns in
the rows, or in the columns? These three questions can be an- the power calculations, we assume the log HIV-1 RNA change

is normally distributed, with the same SD (s) Å 0.7 (suggestedswered through F tests of main effects under the assumption of
no interactions between any of the three factors [17, pp 1091– by previous studies) in all arms.

First, suppose the 8-arm 2 1 2 1 2 factorial trial depicted6]. Fourth: For patients in each mutation classification (e.g., 46,
82), which treatment is the best? Fifth: How predictive of resis- in figure 3 (left and middle) was conducted, with 10 subjects

per arm, a total of 80 subjects. Power to detect each of thetance is each combination of mutation patterns (e.g., £3, 82)?
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Figure 5. Power to detect main
effect and interaction effect in 2 1 2
factorial design. Log10 plasma RNA
change is assumed to be normally
distributed with 0.7 SD in each arm.

three drug class main effects (without interaction) is 81.6%. If a 2-arm trial in which the arms are the levels of A. Suppose
the same number of subjects are evenly allocated in eachthree separate trials were run, we would require 80 patients in

each study, a total of 240 patients, to have the same power to trial, and compare power to detect a main A treatment effect.
In the absence of an interaction, power may be mildly worsedetect the main effects. If the sample size is increased to 40

per arm in a single factorial study of 320 patients, the power in the factorial than the 2-group design. This would occur
solely because persons who receive a factor B treatment mayto detect each of three drug class main effects is ú99.9%,

while power to detect each of three interactions between drug have fewer events. Thus, to keep the power the same, the
sample size should be raised by the ratio of the probabilityclasses is 81.6%. Moreover, for each of the 6 embedded 2 1

2 factorial designs, there is 99.0% power to detect each of 2 of an event in a nonfactorial trial with one effective treatment
to the probability of an event in a factorial trial in which bothmain effects and 57.5% to detect an interaction. Next, suppose

that arms B and F are considered unacceptable, so that the treatments are effective [10, p 258]. For instance, consider
example 1. Suppose the probability of failure on the zidovud-design is reduced to 6 arms with 2 embedded 2 1 2 factorial

designs (figure 3, right). The total sample size has fallen from ine monotherapy arm is 50% and the effect of each combina-
tion zidovudine/saquinavir and zidovudine/ddC is to reduce320 to 240 subjects, but due to the 2 missing cells, 4 rather

than 12 main effects and 2 rather than 6 interactions can be this failure hazard by 30%. The sample size then would need
to be increased by 13% [10, p 259]. This increase rises forinvestigated. For the investigatable effects, power is the same

as given above, 99.0% or 57.5%. Finally, suppose arm H is lower probabilities of failure and for greater reductions of
the hazard by the combination therapies.also unacceptable, so that now there are 200 subjects on 5

arms. Now 2 main effects and 1 interaction can be studied, Now suppose there is an interaction. If it is in the same
direction as the main A effect, then the standard test (stratifiedwith 99.0% or 57.5% power.

Sample-size comparisons between conventional designs log rank) for testing an A treatment effect is at least as powerful
as this test in the 2-group trial [22]. On the other hand, powerand factorial designs are qualitatively similar for binary,

failure time, or other end points. There are, however, im- is less for the factorial trial if the interaction is negative. Of
course, the same power to detect a main A effect in the factorialportant considerations unique to each end point. We briefly

discuss the comparison for a failure time end point, such as trial is available to detect a main B effect. Thus, even in the
case in which power is reduced, 2 questions can be addressedtime to ‘‘virologic rebound.’’ For this end point, interaction

is sensibly defined in terms of the drug efficacy measure at nearly the cost of 1.
See [10, pp 258–60] and [11, p 1060] for further discussionmultiplicative reduction in the hazard of virologic failure.

Consider a 2 1 2 factorial design, with factors A and B, and about the power of factorial designs for detecting main effects
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and interactions. We note that Latin square designs are opti- people that conventional designs cannot provide. The potential
barrier to implementation of these designs is that the set ofmally efficient for investigating main effects in that the fewest

study subjects are needed to achieve high power [17]. treatment arms must fit a structure. The more rigid and com-
plete the structure, the more efficient and informative the de-
sign. However, with the enormous number of new antiretroviral

Discussion
options, there now exist many sets of comparison arms of
equally compelling interest that partially or wholly fit into theFor many sets of antiretrovirals, factorial and Latin square

designs allow for more rapid, precise, and insightful evaluation framework of factorial designs and are appropriate for these
designs. Indeed, factorial antiretroviral trials are beginning tothan do other approaches. These designs are also efficient for

learning about genotypic resistance of patients in various fixed be implemented, as evidenced by ACTG 368, 388, and 384.
The simple 2 1 2 factorial trial ACTG 368 addresses twomutation pattern classifications. This understanding may lead

to identification of a simple rule, based on a genotype assay, questions: Should abacavir be added to a PI/NNRTI regimen?
and Is twice-daily dosing viable, while the 3 1 2 factorial trialfor tailoring therapy to patients. Ultimately, we need to develop

rules for assigning sequences of drug combinations to patients ACTG 388 is designed to compare three combination regimens
and to assess an adherence-intervention. A proposed design ofwith changing mutation profiles over time. To build these rules,

‘‘adaptive’’ trials are needed, in which trial participants with ACTG 384 specifies a 6-arm trial that fits the partial factorial
structure of figure 3 (right) with A Å ddI/stavudine/nelfinavircertain new mutations emerging during the course of follow-

up are randomized to a new regimen. In this paper, we have placebo/efavirenz, E Å zidovudine/lamivudine/nelfinavir pla-
cebo/efavirenz, C Å ddI/stavudine/nelfinavir/efavirenz, G Ånot discussed use of efficient designs for adaptive trials, be-

cause drug-switching rules predictive of long-term virologic or zidovudine/lamivudine/nelfinavir/efavirenz, D Å ddI/stavud-
ine/nelfinavir/efavirenz placebo, and H Å zidovudine/lamivud-clinical status have not yet been established. A staging of trials

is called for—first nonadaptive trials can be used to identify ine/nelfinavir/efavirenz placebo. In this era of studying combi-
nation antiretroviral therapies, a fundamental component thatsound switching rules, which can then be appropriately imple-

mented in adaptive trials. should be included in the process of selecting treatment regi-
mens for clinical trials is conformity of the arms to factorialWe discuss some criteria for judging the appropriateness of

inclusion of treatments in factorial and Latin square trials. First, or partial factorial structure.
The second conclusion is that factorial (and Latin square)for inferences about main effects to be interpretable, the investi-

gators must believe that the results about any given treatment designs are tailor-made for efficiently and systematically study-
ing genotypic correlates of drug resistance. These correlationsfactor can be combined over the levels of the other treatment

factors. To illustrate this concept, in order for the factorial for two drug classes can be studied for the price of a conven-
tional nonfactorial study of associations for one drug class.design of example 1 to be appropriate, it is required that the

benefits of zidovudine/ddC over zidovudine are expected in Moreover, only with structured designs is it possible to make
the important assessment of interactions between specific muta-those on saquinavir and saquinavir placebo, and the benefits

of zidovudine/saquinavir over zidovudine are expected in those tion patterns and drug classes.
on ddC and ddC placebo. Second, for the main effect estimates
to have an unconfounded interpretation, it is necessary that
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