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SUMMARY

The world’s first efficacy trial of a preventive HIV vaccine was completed in 2003. Study participants
who became HIV infected were followed for 2 years and monitored for HIV viral load and initiation
of antiretroviral therapy (ART). In order to determine if vaccination may have altered HIV progression
in persons who acquired HIV, a pre-specified objective was to compare the time until a composite end-
point between the vaccine and placebo arms, where the composite endpoint is the first event of ART
initiation or viral failure (HIV viral load exceeds a threshold xvl copies/ml). Specifically, with vaccine
efficacy, VE(τ, xvl), defined as one minus the ratio (vaccine/placebo) of the cumulative probability of the
composite endpoint (with failure threshold xvl) occurring by τ months, the aim was to estimate the four
parameters {VE(τ, xvl): xvl ∈ {1500, 10 000, 20 000, 55 000} copies/ml} with simultaneous 95% confi-
dence bands. A Gaussian multipliers simulation method is devised for constructing confidence bands for
VE(τ, xvl) with xvl spanning multiple discrete values or a continuous range. The new method is evaluated
in simulations and is applied to the vaccine trial data set.

Keywords: Gaussian multipliers technique; HIV vaccine efficacy trial; Kaplan–Meier estimator; Simultaneous confi-
dence bands.

1. INTRODUCTION

Development of a preventive HIV vaccine (administered to HIV uninfected persons) is a global public
health priority. A preventive vaccine may reduce morbidity and mortality due to HIV infection in at least
three ways: (1) lower susceptibility to acquiring HIV infection, (2) decrease secondary transmission of
HIV from vaccine recipients who become infected and (3) ameliorate HIV disease progression in vaccine
recipients who become infected. Classically designed Phase III vaccine efficacy trials allow evaluation of
vaccine effect (1), but do not allow direct evaluation of (2) and (3). This is the case because secondary
transmission events are not observed, and the numbers of AIDS and death endpoints are low due to the
several-year disease progression period of HIV and the ethical mandate to provide antiretroviral therapy
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(ART) to trial participants who acquire HIV (UNAIDS, 2001). Nonetheless, it is important to attempt
to evaluate vaccine effects (2) and (3) within classically designed trials, because most licensed vaccines
protect through these mechanisms (Murphy and Chanock, 1996; Clemens et al., 1997; Halloran et al.,
1997; Clements-Mann, 1998), and a series of candidate vaccines are under development that are designed
specifically to ameliorate transmission and disease post-acquisition of HIV (Nabel, 2001; Shiver et al.,
2002; HVTN, 2004; IAVI, 2004).

In this article, we consider an indirect approach to assessing (2) and (3) within a classically designed
efficacy trial. This objective is important because (i) classical designs are simpler and cheaper than aug-
mented partners (Longini et al., 1996) and cluster-randomized (Halloran et al., 1997; Hayes, 1998) de-
signs that would permit direct assessments of (2), (ii) no design is available for assessing (3) directly
within a 2–4 year time frame and (iii) the first two completed HIV vaccine efficacy trials (rgp120 HIV
Vaccine Study Group, 2004) and the ongoing efficacy trial in Thailand use a classical design.

In the indirect approach, we consider methods for evaluating vaccine effects on a biomarker variable
measured post-HIV infection that is putatively a surrogate endpoint for secondary transmission and/or
progression to clinical disease. The level of plasma HIV RNA (viral load) is an important putative surro-
gate endpoint, since it has been found to be highly prognostic for both of these endpoints in observational
studies (cf. Mellors et al., 1997; HIV Surrogate Marker Collaborative Group, 2000; Quinn et al., 2000;
Gray et al., 2001), and has been used as a primary endpoint in many ART trials (Gilbert et al., 2001).
The completed and ongoing efficacy trials use viral load measurements as the basis for assessing vaccine
effects on transmission and disease.

In addition to the complication that a vaccine effect to reduce biomarker levels may not predict a
vaccine effect to reduce the rate of clinical endpoints (cf. Fleming, 1992; Fleming and DeMets, 1996;
Albert et al., 1998), the assessment of viral load is complicated by the fact that some trial participants
will likely receive ART following the diagnosis of HIV infection (DHHS Guidelines, 2002). The therapy
will suppress viral replication to undetectable levels in many treated persons (DHHS Guidelines, 2002).
Consequently, the comparison of viral load between vaccine and placebo recipients is confounded by the
effect of ART. This complication can be avoided by basing the analysis only on viral load measurements
made on blood samples drawn soon after the diagnosis of HIV infection and before the initiation of ART.
Though useful, this analysis provides no direct information about the durability of the vaccine effect.
Initial suppression of virus by vaccine may wane over time due to emergent HIV vaccine resistance
mutations; this phenomenon has been observed in monkey challenge studies that evaluated leading HIV
vaccine approaches (Barouch et al., 2002, 2003), and is a major potential problem for HIV vaccines in
humans (Lukashov et al., 2002). Therefore, it is important to analyze study endpoints that capture longer-
term vaccine effects on viral load.

In the first HIV vaccine efficacy trial, VAX004, the Statistical Analysis Plan (SAP) specified
the main post-infection study endpoint as a composite endpoint, defined as either virologic failure (a rise
in HIV viral load above a pre-specified failure threshold xvl copies/ml) or initiation of ART, whichever
occurs first. This endpoint has recently been proposed for use as a co-primary endpoint (together with
HIV infection) for efficacy trials of HIV vaccines designed to ameliorate viremia (Gilbert et al., 2003).
The composite endpoint is directly tied to clinical events, because virologic failure places a subject at
increased risk for AIDS and HIV transmission to others, and initiating ART exposes a patient to drug
toxicities, drug resistance and the loss of future ART options (Hirsch et al., 2000; DHHS Guidelines,
2002). The composite endpoint measures the magnitude of viremic control through the choice of fail-
ure threshold xvl, with a vaccine effect on the endpoint with a lower threshold indicating greater sup-
pression. In addition, the endpoint measures the durability of the vaccine effect by counting events
during a sufficiently long period following the diagnosis of HIV. Virologic failure has been used as
a primary endpoint in many clinical trials of ARTs for HIV infected persons (Gilbert et al., 2000,
2001).
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An analytic advantage of the composite endpoint is that it can be assessed validly using standard
survival analysis techniques such as Kaplan–Meier curves and log-rank tests. Such methods would yield
biased inferences if applied to assess the time to virologic failure with censoring of subjects who ini-
tiate ART, because ART initiation is almost certainly associated with the risk of virologic failure, since
physicians use information on viral load in decisions to prescribe ART (DHHS Guidelines, 2002).

The SAP for VAX004 specified analyzing a vaccine efficacy parameter, VE(τ, xvl), defined as one
minus the ratio (vaccine/placebo) of cumulative probabilities of the composite endpoint occuring by
τ = 12 months post-infection diagnosis. VE(τ, xvl) is interpreted as the percent reduction (vaccine
versus placebo) in the cumulative risk of the composite endpoint by τ months. A parameter based on
cumulative rather than instantaneous incidence rates was used in order to capture durability of the vac-
cine effect to 12 months. VE(τ, xvl) can be estimated using Kaplan–Meier estimates of the composite
endpoint survival curves for the vaccine and placebo groups. The SAP specified making inferences on
VE(τ, xvl) at the four thresholds xvl = 1500, 10 000, 20 000, 55 000. These thresholds were selected based
on an HIV-discordant heterosexual partners study in Uganda, which showed that persons with viral load
<1500 copies/ml rarely transmit (Quinn et al., 2000; Gray et al., 2001), and on the Multicenter AIDS
Cohort Study (MACS), which demonstrated that the viral thresholds 1500, 10 000, 20 000 and 55 000
discriminated the risk of progressing to AIDS within 3 years after infection (DHHS Guidelines, 2002).
Furthermore, the MACS population of men who have sex with men (MSM) is similar to the VAX004
study population, which was 94.3% MSM, and the MACS data provided the basis for the recent U.S.
recommendations for when to initiate ART (DHHS Guidelines, 2002).

To control the Type I error rate, the SAP specified calculation of simultaneous confidence intervals for
VE(τ, xvl), xvl = 1500, 10 000, 20 000 and 55 000, with 95% joint coverage probability. To our knowl-
edge no solution to this problem exists in the literature, and we develop a solution here. Given that these
four particular thresholds are not validated as important thresholds for measuring HIV vaccine effects, and
that typically scant information is available a priori to predict how low the tested vaccine may be capable
of suppressing viral load, it is also important to compute simultaneous confidence bands for VE(τ, xvl)
with xvl varying over a continuous range. Such bands convey a full picture of the magnitude of vaccine
efficacy, for example allowing identification of the threshold (if any) at which the lower simultaneous con-
fidence limit crosses zero. Making inferences over a pre-specified interval of thresholds also avoids the
need to guess at the discrete set of most important thresholds, and prevents post hoc cheating, i.e. selective
reporting of VE(τ, xvl) estimates at the thresholds that yield the largest estimates. We develop a general
procedure for constructing confidence bands that applies to both cases of xvl spanning discrete levels and
a continuous range. Work related to the problem addressed here includes methodology for constructing
confidence bands for a functional of two survival curves (Parzen et al., 1997) or of two cause-specific
cumulative incidence functions (McKeague et al., 2001). These procedures approximated the distribution
of interest using the Gaussian multipliers technique introduced by Lin et al. (1993); we also apply this
technique.

How to interpret the estimated VE(τ, xvl) curve over a range of xvl values? First, note that the lower
the threshold xvl at which there is efficacy, the more potent (and efficacious) the vaccine, as greater viral
suppression predicts greater reductions in both disease progression and HIV transmissibility to others.
Therefore, the lowest threshold at which the lower simultaneous confidence limit for VE(τ, xvl) exceeds 0
indicates the greatest potency of viral suppression that the vaccine provides with high confidence. Second,
inference on VE(τ, xvl) at the threshold xvl at which starting ART is recommended (and offered/provided
to trial participants) has important policy implications, because the efficacy parameter at this threshold has
interpretation as the percent vaccine reduction in the fraction of persons who need ART by time τ . Third,
albeit with interpretation complicated by ART initiation, the shape of the estimated curve VE(τ, xvl)
reflects the mechanism by which vaccination impacts viral load. In the clearest case that trial participants
adhere to the ART guidelines used in the trial, if the vaccine operates by lowering viral loads at all levels



Failure time analysis in vaccine trials 377

by a constant amount (i.e. a location-shift effect), then VE(t, xvl) is positive for all xvl. Under other
mechanisms of vaccine effects, the efficacy can vanish to zero above a certain threshold xvl; for example
this may occur if vaccination only impacts viral loads below a certain level.

This article is organized as follows. The procedure for generating simultaneous confidence bands is
developed in Section 2, and is studied in simulations in Section 3. Section 4 applies the methods to the
VAX004 data. Section 5 discusses alternative and complementary approaches to studying the composite
endpoint. Section 6 provides discussion on how to apply the new method in future vaccine trials, and an
Appendix contains theoretical details of the method.

2. METHOD FOR CONSTRUCTING SIMULTANEOUS CONFIDENCE BANDS

2.1 Preliminaries and the estimand

With τ a fixed time point and xvl a fixed virologic failure threshold, define

VE(τ, xvl) = 1 − F1(τ, xvl)/F2(τ, xvl),

where F1(τ, xvl)(F2(τ, xvl)) is the cumulative probability that a vaccinated (placebo) subject fails viro-
logically or starts treatment by τ months post-infection diagnosis. Let Tk1, . . . , Tknk be the times between
infection diagnosis and treatment initiation and Yk1(t), . . . , Yknk (t) be the viral loads at time t for the nk

infected subjects in group k (k = 1, vaccine; k = 2, placebo). Assume that {Yki (t), Tki }, i = 1, . . . , nk ,
are independent, identically distributed (iid) within each group, and the two samples are independent of
one another. We also assume that Fk(t, xvl) is continuous on [0, τ ] × [xL

vl, xU
vl] with Fk(τ, xL

vl) < 1 for
k = 1, 2. The total number of infected subjects is n = n1 + n2. Let ρk = limn→∞ nk/n and 0 < ρk < 1.
The goal is to construct simultaneous confidence bands for VE(τ, xvl) for xvl spanning a pre-specified
range xvl ∈ [xL

vl, xU
vl], where xL

vl < xU
vl and F2(τ, xU

vl) > 0. The widest possible range of thresholds is
specified by xL

vl and xU
vl equal to the lower- and upper-quantification limits of the viral load assay, respect-

ively.
The time for subject i in group k to fail virologically given the virologic failure threshold xvl or starting

treatment, whichever comes first, is T̃ki (xvl) = min{inf{t : sup0�s�t Yki (s) � xvl}, Tki }. Let Cki be the
censoring time for subject i in group k, X̃ki (xvl) = min{T̃ki (xvl), Cki }, and δki (xvl) = I (T̃ki (xvl) � Cki ).
We assume T̃ki (xvl) and Cki are independent for each k.

Throughout this article we define the time of virologic failure as the time of the first study visit at
which the viral load is observed to equal or exceed xvl. Alternatively, this event time could be taken to be
the true time at which viral load first exceeds xvl. This event time is interval censored, and the estimation
of VE(t, xvl) could be biased if interval censoring is ignored. We restrict attention to the observable
viral failure detection time because (i) it is clinically relevant to define failure at the clinic visit of failure
detection, because this is the event observed by physicians that influences treatment decisions; (ii) the
time of ART initiation is defined by the clinic visit at which ART is prescribed, so that using the clinic
visit time for viral failure creates a cohesive definition of the composite endpoint event time and (iii) there
is greatest interest in assessing VE(t, xvl) at the latest time point t = τ, and inferences on VE(τ, xvl) are
minimally susceptible to bias from interval censoring, since interval censoring up to the last visit time
prior to τ does not impact estimates of the proportion failing by τ .

For fixed xvl, the cumulative probability that an infected subject in group k fails virologically or starts
treatment by time τ is equal to

Fk(τ, xvl) = P{T̃ki (xvl) � τ } = 1 − P

{
sup

0�s�τ
Yk(s) < xvl, Tk > τ

}
.



378 P. B. GILBERT AND Y. SUN

2.2 Estimation

Let Sk(τ, xvl) = 1 − Fk(τ, xvl) be the survival function of T̃ki (xvl) at time τ and let Ŝk(τ, xvl) be the
Kaplan–Meier estimator of Sk(τ, xvl) based on {X̃ki (xvl), δki (xvl)} for i = 1, . . . , nk . Then F̂k(τ, xvl) =
1 − Ŝk(τ, xvl). Let �̂k(τ, xvl) be the Nelson–Aalen estimator for the cumulative hazard function
�k(τ, xvl) = −logSk(τ, xvl). For explicit forms of these estimators, we introduce the following nota-
tions. Let Nki (t, xvl) = I (X̃ki (xvl) � t, δki (xvl) = 1), Rki (t, xvl) = I (X̃ki (xvl) � t), Mki (t, xvl) =
Nki (t, xvl) − ∫ t

0 Rki (s, xvl) d�k(s, xvl) and Rk(t, xvl) = ∑nk
i=1 Rki (t, xvl). Let rk(t, xvl) = P{X̃ki (xvl) �

t}. The Nelson–Aalen estimator for the given xvl is then

�̂k(t, xvl) =
nk∑

i=1

∫ t

0

dNki (s, xvl)

Rk(s, xvl)
.

It is well known that for the given value of xvl, we have the following martingale representation for the
Kaplan–Meier estimator (Fleming and Harrington, 1991):

√
nk(F̂k(τ, xvl) − Fk(τ, xvl)) = Sk(τ, xvl)

∫ τ

0

√
nk

∑nk
i=1 dMki (s, xvl)

rk(s, xvl)
+ op(1). (2.1)

It is shown in the Appendix that (2.1) holds uniformly for xvl ∈ [xL
vl, xU

vl] and that (2.1) converges in dis-
tribution to a mean-zero normal random variable with variance equal to σ 2

k (τ, xvl) = S2
k (τ, xvl)

∫ τ
0 d�k

(s, xvl)/rk(s, xvl). In the absence of censoring, σ 2
k (τ, xvl) reduces to Fk(τ, xvl) Sk(τ, xvl). The asymp-

totic variance σ 2
k (τ, xvl) can be consistently estimated by σ̂ 2

k (τ, xvl) = nk Ŝ2
k (τ, xvl)

∫ τ
0 d�̂k(s, xvl)/Rk

(s, xvl).
For ease of notation, in what follows, we drop the first component τ in the functions. Then

U (xvl) = √
n

(
F̂1(xvl)

F̂2(xvl)
− F1(xvl)

F2(xvl)

)

= √
n

(
1

F2(xvl)
(F̂1(xvl) − F1(xvl)) − F1(xvl)

(F2(xvl))2
(F̂2(xvl) − F2(xvl))

)
+ op(1), (2.2)

uniformly in xvl ∈ [xL
vl, xU

vl].

2.3 Pointwise confidence bands for VE(xvl)

It follows from the central limit theorem that for each fixed xvl, U (xvl) converges in distribution to a
mean-zero normal random variable with variance

σ 2(xvl) = ρ−1
1 (F2(xvl))

−2σ 2
1 (xvl) + ρ−1

2 (F1(xvl))
2(F2(xvl))

−4σ 2
2 (xvl),

which can be estimated by σ̂ 2(xvl) obtained by replacing ρk with nk/n, Fk(xvl) with F̂k(xvl) and σ 2
k (xvl)

with σ̂ 2
k (xvl). Let V̂E(xvl) = 1− F̂1(xvl)/F̂2(xvl). Large sample 100(1−α)% pointwise confidence bands

for VE(xvl) at xvl are given by

V̂E(xvl) ± n−1/2zα/2σ̂ (xvl), (2.3)

where zα/2 is the upper α/2 quantile of a standard normal distribution.
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2.4 Simultaneous confidence bands for VE(xvl)

From (2.1) and (2.2), we have

U (xvl) = (n/n1)
1/2(F2(xvl))

−1S1(xvl)

∫ τ

0

n−1/2
1

∑n1
i=1 dM1i (s, xvl)

r1(s, xvl)

− (n/n2)
1/2 F1(xvl)

(F2(xvl))2
S2(xvl)

∫ τ

0

n−1/2
2

∑n2
i=1 dM2i (s, xvl)

r2(s, xvl)
+ op(1). (2.4)

Let Z1i , Z2 j , i = 1, . . . , n1, j = 1, . . . , n2, be iid standard normal random variables. Let

U∗(xvl) = (n/n1)
1/2(F̂2(xvl))

−1 Ŝ1(xvl)

∫ τ

0

n−1/2
1

∑n1
i=1 Z1i dM̂1i (s, xvl)

R1(s, xvl)

− (n/n2)
1/2 F̂1(xvl)

(F̂2(xvl))2
Ŝ2(xvl)

∫ τ

0

n−1/2
2

∑n2
i=1 Z2i dM̂2i (s, xvl)

R2(s, xvl)
, (2.5)

where M̂ki (t, xvl) = Nki (t, xvl) − ∫ t
0 Rki (s, xvl) d�̂k(s, xvl). It is shown in the Appendix that U (xvl)

converges weakly to a mean-zero Gaussian process for xvl ∈ [xL
vl, xU

vl] and that conditional on the observed
data, the process U∗(xvl) converges weakly to the same limiting Gaussian process as U (xvl). Also, by the
uniform almost sure convergence of σ̂ (xvl) to σ(xvl) over xvl ∈ [xL

vl, xU
vl], it follows that

lim
n→∞ P∗

⎧⎨
⎩ sup

xL
vl�xvl�xU

vl

|U∗(xvl)/σ̂ (xvl)| � x

⎫⎬
⎭ a.s.= lim

n→∞ P

⎧⎨
⎩ sup

xL
vl�xvl�xU

vl

|U (xvl)/σ̂ (xvl)| � x

⎫⎬
⎭ , (2.6)

where P∗{A} is the conditional probability of A given the observed data sequence. Let cα/2 be the
asymptotic 1−α quantile of supxL

vl�xvl�xU
vl

|U (xvl)/σ̂ (xvl)|. Let U∗
b (xvl), b = 1, . . . , B, be B independent

copies of U∗(xvl), obtained by repeatedly generating independent sets of iid standard normal random
variables {Z1i , Z2 j , i = 1, . . . , n1, j = 1, . . . , n2} while holding the observed data fixed. The quantile
cα/2 can be estimated consistently by the 1 − α quantile of the set {supxL

vl�xvl�xU
vl

|U∗
b (xvl)/σ̂ (xvl)|, b =

1, . . . , B}. Large sample 100(1−α)% uniform confidence bands for VE(xvl) over xvl ∈ [xL
vl, xU

vl] are then
given by

V̂E(xvl) ± n−1/2cα/2σ̂ (xvl). (2.7)

3. SIMULATIONS

A complicated question is how to simulate viral loads and the times to treatment initiation in the most
realistic way. The time to treatment initiation depends heavily on the current science on when to start
ART and on the policy that is used to provide treatment for infected trial participants; these factors vary
over time and with the geographic region of the trial. Current science suggests that individuals with high
viral load and/or low CD4 cell counts should start treatment. In particular, U.S. guidelines recommend
starting treatment when viral load > 55 000 copies/ml or when CD4 < 350 copies/ml (DHHS Guidelines,
2002). For trials in developed countries, considerable heterogeneity in treatment initiation among infected
individuals is expected; some will follow the guidelines and others will start treatment apart from the
guidelines. In contrast, trials in developing countries are expected to operate under strict standardized
guidelines that are adhered to by most or all infected participants.
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3.1 Simulation model setup

We develop a simulation model based on the viral load and treatment initiation data from the VAX004
trial:

1. n = 347 infected subjects, n1 = 225 in group 1 (vaccine) and n2 = 122 in group 2 (placebo).
2. Subjects are followed for 24 months after the diagnosis of HIV infection.
3. 20% random dropout prior to the composite endpoint by 24 months for each group.
4. Viral loads are measured from samples drawn at times near nine scheduled visits at Months 0.5,

1, 2, 4, 8, 12, 16, 20 and 24 post-infection diagnosis, denoted by t j , 1 � j � 9. The actual visit
times in months for each individual are normally distributed with means at the scheduled times.
Specifically, for the i th individual in group k, the j th visit time tki j is N (t j , σ

2
j ), where σ1 = 0.05,

σ2 = 0.06, σ3 = 0.10 and σ j = 0.12 for j = 4, . . . , 9.
5. The viral loads (log10 transformed) from a subject in the placebo group satisfy a standard linear

mixed effects (lme) model,

Y2i (t) = β0 + β1t + β2t2 + β3t3 + β4t4 + r0i + r1i t + εi (t), (3.1)

where (β0, β1, β2, β3, β4)
� = (4.3884, −0.2808, 0.0363, −0.0019, 0.000035)� are fixed effects param-

eters. The random effects (r0i , r1i )
� have a bivariate normal distribution with mean 0 and covariance

matrix given by Var(r0i ) = 0.4745, Var(r1i ) = 0.00233 and Cov(r0i , r1i ) = −0.0138. The measurement
errors εi (tki j ) are iid with mean 0 and variance 0.4977.

The viral load processes for the vaccine group are simulated in three ways:

(a) null model (denoted by NULL) where the viral load processes follow (3.1);

(b) constant mean shift model (denoted by CONS) with a mean shift of svl at all 9 time points, lower
in vaccine than placebo. We take svl = 0.33 and 0.5 on the log10 scale;

(c) non-constant mean shift model (denoted by NCONS) with a mean shift of svl lower at Months
0.5, 1 and 2, mean 0.5svl lower at Month 4 and 0 lower at Months 8, 12, 16, 20, 24. For this
scenario the vaccine initially lowers viral load, but then vaccine resistance develops, which ruins
the suppression.

Once the simulation process for viral load is set, the time to treatment initiation is generated in one of
two ways: (i) (INDEP) independent of viral load and CD4 cell count and (ii) (DEP) dependent on viral
load and CD4 cell count.

(i) INDEP of biomarkers. The times to treatment initiation are simulated from exponential distri-
butions in each group with approximate probability of starting treatment by 24 months, 0.5 in the
placebo group and 0.5 (null case) or 0.25 (alternative cases) in the vaccine group.

(ii) DEP on biomarkers. Based on the U.S. treatment guidelines (DHHS Guidelines, 2002), subjects
whose CD4 counts decline to low levels (<350 cells/mm3) have a high chance of starting ART,
subjects whose CD4 counts decline to moderate levels (<500 cells/mm3) have a moderate chance of
starting ART, subjects whose viral load becomes high (>55 000 copies/ml) have a moderate chance
of starting treatment and subjects whose CD4 stays above 500 cells/mm3 and viral load stays
below 55 000 copies/ml have a low chance of starting treatment. These ideas can be formalized
by first simulating a CD4 process for each subject. Fitting a simple lme model to the real CD4
count data from VAX004 yields the following setup. There are two fixed effects parameters, the
intercept β0 = 627.9 and slope β1 = −0.203. There are two random effects that represent subject-
specific intercepts (b0) and slopes (b1), which have a bivariate normal distribution with mean 0 and
Var(b0) = 41375.0, Var(b1) = 102.9 and Cov(b0, b1) = −635.6. The Gaussian error ε has mean
0 and variance 15724.9.
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For simulations with a vaccine effect to lower viral load by mean 0.33 (0.5), we assume a vaccine effect
to increase the mean CD4 count by 100 (150) cells/mm3. Simulation configurations with no vaccine effect
on viral load also have no vaccine effect on CD4 cell count.

At each visit time, the probability of starting ART within the next month (for visits at Months 0.5, 1, 2)
and within the next 2 months (for visits at Months 4, 8, 12, 16, 20) is set as a function of the current CD4
count and viral load. Specifically, the probabilities of ART initiation at a visit during the next 1 or 2 month
interval are fixed as follows:

CD4 count Viral load Probability of ART initiation

CD4 � 350 VL > 55 000 0.7
CD4 � 350 VL � 55 000 0.3
350 < CD4 � 500 VL > 55 000 0.1
350 < CD4 � 500 VL � 55 000 0.05
CD4 > 500 VL > 55 000 0.02
CD4 > 500 VL � 55 000 0.01

Under this scenario, about 40% in the placebo group and 25–40% in the vaccine group start treatment
by 24 months.

For a single data set randomly generated under each scenario defined by the INDEP and DEP mod-
els of ART initiation crossed with the NULL, CONS(2) and NCONS(2) models of viral load ((2) de-
notes a mean shift of svl = 0.5), Figure 1 illustrates 95% confidence bands for VE(14, xvl) for xvl ∈
[1500, 55 000].

3.2 Coverage probability and empirical power

To evaluate the coverage probability of the confidence bands and the ability of the bands to identify non-
zero vaccine efficacy, we consider testing the following hypotheses:

H0i: VE(14, xvl) = 0 for all xvl ∈ Ri versus Hai: VE(14, xvl) �= 0 for some xvl ∈ Ri ,

where Ri , i = 1, . . . , 8, represent the following ranges of xvl: R1, xvl ∈ [1500, 55 000]; R2, xvl ∈
[10 000, 55 000]; R3, xvl ∈ {1500, 10 000, 20 000, 55 000}; R4, xvl ∈ {10 000, 55 000}; R5, xvl = 1500;
R6, xvl = 10 000; R7, xvl = 20 000; R8, xvl = 55 000. Since the null hypothesis H0i is rejected if and
only if the confidence bands for xvl ∈ Ri exclude zero at one or more thresholds xvl, assessing these
eight scenarios informs on the coverage probability of the confidence bands. In addition, evaluating
these scenarios informs the power/precision trade-offs for various ways of conducting the analysis. When
designing the real trial we struggled with the question of what was the best range of thresholds to study.

We propose two types of test statistics for testing H0i versus Hai . Specifically,

Si = sup
xvl∈Ri

|U (xvl)/σ̂ (xvl)|

and

Qi =
∑

xvl∈Ri

|U (xvl)/σ̂ (xvl)|2 or Qi =
∫

xvl∈Ri

|U (xvl)/σ̂ (xvl)|2 dxvl,

depending on whether Ri is a finite set or a continuous interval. The null hypothesis is rejected for
large values of the test statistics. The supremum tests Si are known to be omnibus but may have lower
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Fig. 1. For a single data set randomly generated under the scenarios (a) INDEP, NULL; (b) INDEP, CONS(2); (c)
INDEP, NCONS(2); (d) DEP, NULL; (e) DEP, CONS(2) and (f) DEP, NCONS(2) described in Section 3.1, the plots
show the estimate of VE(14, xvl) (solid lines) with 95% pointwise (dotted lines) and simultaneous (dashed lines)
confidence bands, for xvl ∈ [1500, 55 000] on the log10 scale.

power because of lack of specificity to specific alternatives. The sum/integrated square tests Qi combine
information across thresholds and are more powerful against monotone alternatives where the vaccine
always improves over the placebo.

For the pointwise tests corresponding to i = 5, 6, 7, 8, the tests Si and Qi at significance level α are
equivalent to a normal test with the test statistic Z = U (xvl)/σ̂ (xvl) and rejection region |Z | > zα/2.
For simultaneous tests corresponding to i = 1, 2, 3, 4, the critical values ci α/2 for Si are estimated by
the 1 − α quantile of the data set {supxvl∈Ri

|U∗
b (xvl)/σ̂ (xvl)|, b = 1, . . . , B}. The critical values for

Qi are estimated by the 1 − α quantile of the data set
{∑

xvl∈Ri
|U∗

b (xvl)/σ̂ (xvl)|2, b = 1, . . . , B
}

or{∫
xvl∈Ri

|U∗
b (xvl)/σ̂ (xvl)|2 dxvl, b = 1, . . . , B

}
, depending on whether Ri is a finite set or continuous in-

terval. When Ri is discrete with m thresholds, a computationally simple alternative to the above Gaussian
multiplier approach is to use m normal statistics Z (one for each xvl in Ri ) and to apply the Bonferroni
correction to determine significance. Such a procedure is likely to be conservative, resulting in wider
intervals and reduced power, especially when Ri contains a large number of threshold values. Table 1
describes the empirical sizes and powers of the supremum tests and the sum/integrated square tests using
Gaussian multiplier critical values, and Table 2 shows the results for the normal tests, with Bonferroni cor-
rection when m > 1. Each entry in Tables 1 and 2 are calculated based on 1000 repetitions and B = 1000.
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Table 1. Empirical sizes and powers × 100 of the supremum tests Si and sum/integrated square tests Qi :
the models under which the data were simulated [NULL, CONS(1), CONS(2), NCONS(1) and NCONS(2)]
are defined in Section 3.1. svl = 0.33 in models CONS(1) and NCONS(1) and svl = 0.5 in models CONS(2)

and NCONS(2)

Test Supremum Si Sum/integrated square Qi

Model R1 R2 R3 R4 R1 R2 R3 R4

INDEP NULL 7.3 6.2 6.6 7.0 8.6 7.5 6.7 7.0
CONS(1) 91.2 91.5 93.3 92.7 91.0 93.4 94.0 94.1
CONS(2) 99.4 99.4 99.9 99.5 99.3 99.6 99.9 99.6
NCONS(1) 82.9 81.7 80.2 80.4 84.1 84.1 82.0 80.7
NCONS(2) 95.3 94.7 94.0 93.6 97.0 96.9 95.8 94.7

DEP NULL 5.5 4.4 5.6 4.8 5.4 6.0 4.5 5.1
CONS(1) 84.2 85.4 87.4 87.1 85.0 87.4 89.2 88.0
CONS(2) 99.3 99.4 99.6 99.6 99.2 99.6 99.9 99.8
NCONS(1) 72.7 68.8 68.4 66.4 75.9 72.8 70.8 68.2
NCONS(2) 95.0 95.0 94.1 92.3 96.3 96.4 94.6 93.7

Table 2. Empirical sizes and powers × 100 of the normal tests, with Bonferroni correction for R3 and R4:
the models under which the data were simulated [NULL, CONS(1), CONS(2), NCONS(1) and NCONS(2)]
are defined in Section 3.1. svl = 0.33 in models CONS(1) and NCONS(1) and svl = 0.5 in models CONS(2)

and NCONS(2)

Normal test Z with
Test Normal test Z Bonferroni correction

Model R5 R6 R7 R8 R3 R4

INDEP NULL 0.8 5.0 5.7 5.9 4.3 6.1
CONS(1) 38.5 77.8 86.4 91.7 90.6 91.9
CONS(2) 69.9 97.0 98.6 99.3 99.8 99.5
NCONS(1) 25.3 59.2 67.7 77.4 75.8 78.1
NCONS(2) 47.2 82.0 87.2 92.0 91.6 92.7

DEP NULL 1.5 4.5 5.5 4.1 3.2 4.1
CONS(1) 37.1 71.3 79.3 84.9 82.7 85.0
CONS(2) 71.7 97.4 98.7 99.3 99.3 99.4
NCONS(1) 21.6 49.8 58.3 63.6 63.6 63.9
NCONS(2) 46.3 81.1 88.0 89.8 91.9 91.8

Based on the NULL simulations, the confidence band procedures consistently have sizes near the nom-
inal 0.05 level. An exception is for the null hypothesis R5 in Table 2, for which the empirical size is 0.008
and 0.015 for the INDEP and DEP cases, respectively. The low size occurs because when xvl = 1500, al-
most every subject fails by τ = 14 months, so that the risk sets R1(t, xvl) and R2(t, xvl) in formulas (2.4)
and (2.5) are very small near τ . The tiny risk sets cause the asymptotic approximation to be unreliable.

Based on the non-null simulations, the following observations were made regarding the compara-
tive power for evaluating VE(14, xvl) in the ranges R1, . . . , R8. First, the sum/integrated square test has
slightly higher power than the supremum test for thresholds in R1, R2, R3 or R4. For R3 and R4, both tests
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show greater power than the normal tests with Bonferroni correction. Second, power is comparable for
R1 through R4 under each test; therefore, in practice fixed thresholds can be added without appreciably
compromising power. Third, for hypothesis tests at single threshold values R5 through R8, the power
increases with the magnitude of the threshold. Along the lines described above, this result occurs be-
cause almost all subjects fail by time τ when the threshold xvl is relatively small. Power was consistently
lower for the DEP versus INDEP simulations, which occurs because the alternative hypothesis is closer to
the null hypothesis for the DEP simulations. Finally, as expected, power was consistently higher for the
simulations with true viral load mean shift of svl = 0.5 compared to svl = 0.33.

4. EXAMPLE

The world’s first HIV vaccine efficacy trial (VAX004) was conducted in North America and the Nether-
lands from 1998 to 2003 (rgp120 HIV Vaccine Study Group, 2004). Participants were randomized in
a 2:1 ratio to receive the subunit protein vaccine AIDSVAX (3598 subjects) or a blinded placebo (1805
subjects). Participants were immunized at Months 0, 1, 6, 12, 18, 24 and 30 post-randomization, and were
tested for HIV infection at Months 6, 12, 18, 24, 30 and 36. Subjects diagnosed with HIV infection were
re-consented and followed on a Month 0.5, 1, 2, 4, 8, 16, 20 and 24 post-infection diagnosis visit schedule.
At each of these visits, HIV viral load and status of ART initiation were recorded. The comprehensive
results of the analyses of the data in VAX004 will be presented in clinical journals (including rgp120 HIV
Vaccine Study Group, 2004); here we present a subset of the results needed to demonstrate and apply the
statistical methodology developed here.

The primary objective of the trial was to assess whether vaccination reduced the rate of HIV infec-
tion. Unfortunately it did not, as 7% of participants were infected in each study arm (vaccine: 241/3598
infected; placebo: 127/1805 infected). The secondary objective, of interest for this article, was to assess
whether vaccination altered the course of HIV progression. Of the 368 infected subjects, 347 enrolled into
the post-infection cohort and are analyzable for post-infection endpoints, 225 and 122 in the vaccine and
placebo groups, respectively. The composite endpoint was analyzed for the entire randomized cohort as
well as for the cohort of HIV infected subjects. Analyses of the infected subcohort are important because
vaccine effects on HIV pathogenesis are most clearly measured in infected subjects, and it is feasible to
monitor this subcohort intensively for several years. However, this analysis is not intent-to-treat (ITT) and
is susceptible to post-randomization selection bias (Hudgens et al., 2003; Gilbert et al., 2003), and there-
fore, it is important to also conduct unbiased ITT analyses of the composite endpoint in all randomized
subjects. The ITT analyses evaluate the time between randomization and the composite endpoint, and
approximate a classical assessment of vaccine efficacy to prevent clinically significant disease (Clements-
Mann, 1998). A drawback of the ITT approach is that the follow-up period for capturing endpoints is
restricted to the interval during which the entire cohort is followed.

Viral load tends to be highly variable in the first few weeks following HIV infection (Schacker et al.,
1998). A small fraction of infected trial participants may have a Month 0.5 viral load value that was
measured in this acute phase. For such subjects vaccination may be efficacious to control viral load,
but suppression is not yet achieved. To eliminate the influence of possibly unstable Month 0.5 values,
measurements at this visit were not used for determining composite endpoints. Therefore, composite
endpoints were registered at the earliest date of ART initiation or virologic failure based on a viral load
measurement at the Month 1 visit or later. For analyses of the infected subcohort, subjects who did not
experience the composite endpoint by 14 months post-infection diagnosis were censored at 14 months,
and for randomized cohort analyses, subjects who did not experience the composite endpoint within 36
months of randomization were censored at 36 months. In both analyses subjects lost to follow-up were
censored at the date of last contact.
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Fig. 2. For the VAX004 trial data, the figure shows Kaplan–Meier curves of (a) the time between randomization and
ART initiation and (b) the time between HIV infection diagnosis and ART initiation.

For each cohort and by study arm, Figure 2 shows Kaplan–Meier curves of the time to ART initiation,
and Figure 3 shows the pre-ART measurements of viral load. A Cox model analysis verified strongly de-
pendent censoring of pre-ART viral profiles by ART initiation, with estimated hazard ratio 1.88 (95% CI
1.51–2.34, p < 0.0001) for each log10 higher value of most recent pre-ART viral load. This result implies
that a Kaplan–Meier analysis of the time-to-viral failure with censoring by ART would be severely biased,
and motivates analysis of the composite endpoint. For the four pre-specified virologic failure thresholds
xvl = 1500, 10 000, 20 000, 55 000 copies/ml, Figure 4 shows Kaplan–Meier curves of the time to the
composite endpoint. In the ITT analysis, 290 randomized subjects reached the composite endpoint with
xvl = 1500, 227 (78.3%) of whom failed virologically, and 211 subjects reached the composite end-
point with xvl = 55 000, 117 (55.5%) of whom failed virologically. For the infected cohort, 320 subjects
reached the composite endpoint with xvl = 1500, 261 (81.6%) of whom failed virologically, and 237
subjects reached the composite endpoint with xvl = 55 000, 144 (60.8%) of whom failed virologically.
Figure 4 suggests comparable distributions of time-to-composite endpoints in the vaccine and placebo
arms.

For formal inferences, the parameter VE(14, xvl) was assessed for xvl ranging between 1500 and
55 000 copies/ml, where a 14-month time frame post-infection diagnosis was chosen so as to capture all
events occurring by the Month 12 visit. Since most subjects failed by the Month 12 visit, an analysis
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Fig. 3. For the VAX004 trial data, the figure shows the pre-ART measurements of viral load for the (a) vaccine
group and (b) placebo group, as a function of the time of sampling post-infection diagnosis. For pre-ART viral loads
sampled at the Month 0.5, 1, 2, 4, 8, 12, 16, 20 and 24 visits, the solid lines are mean estimates and the dotted lines
are pointwise 95% confidence intervals.

that would use a longer follow-up duration would provide little additional information over the 12-month
analysis. For ITT inferences, the parameter VEITT(36, xvl) was assessed for xvl spanning the same values
as for the infected subcohort analysis, where VEITT(36, xvl) is one minus the ratio (vaccine/placebo) of
the cumulative incidence of the composite endpoint occurring between randomization and 36 months.
Inference on VEITT(36, xvl) evaluates the combined effects of vaccination to reduce the infection rate and
composite endpoint rate. Figure 5 shows estimates of VEITT(36, xvl) and VE(14, xvl), with pointwise and
simultaneous 95% confidence interval estimates. Bold vertical segments indicate the simultaneous 95%
confidence intervals for the four fixed values of xvl. The confidence coefficient cα/2 for each of the bands
was obtained by generating B = 1000 copies of U∗(xvl).

The point estimates of VEITT(36, xvl) varied between 0.03 (at xvl = 7286; 3.88 log10) and 0.27 (at
xvl = 43 652; 4.64 log10) over the range of thresholds xvl. The 95% simultaneous bands included zero
at all thresholds xvl, indicating no significant differences in the risk of composite endpoints among the
groups. The fact that the point estimates of VEITT(36, xvl) were consistently above zero is explained by
the trend toward a longer time until ART initiation in the vaccine group (p = 0.07, Figure 2(a)).

The point estimates of VE(14, xvl) varied between −0.05 and 0.05 and steadily increased with xvl.
The simultaneous confidence bands included zero at all threshold values, and were most narrow for xvl =
1500, −0.12 to 0.05, and steadily widened with xvl, with span −0.24 to 0.30 at xvl = 55 000. This pattern
occurred because the number of events decreased with xvl, from 320 events for xvl = 1500 to 237 events
for xvl = 55 000. In comparing the analyses of the randomized and infected cohorts, the simultaneous
confidence bands were substantially narrower for the latter analysis, with average half-width 0.39 and
0.16, respectively. This result occurred in part because there were fewer endpoints for the ITT analysis
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Fig. 4. For the four pre-specified virologic failure thresholds xvl = log10 1500, 10 000, 20 000 and 55 000 copies/ml
(i.e. levels 3.18, 4.00, 4.30 and 4.74) in the VAX004 trial, the figure shows Kaplan–Meier curves of (left panel) the
time between randomization and the composite endpoint, and of (right panel) the time between infection diagnosis
and the composite endpoint. The solid (dotted) line denotes the vaccine (placebo) group.

(since composite endpoints occurring beyond 36 months post-randomization were excluded in the ITT
inferences; Figure 4).

Notice that for both the ITT and infected cohort analyses, the simultaneous confidence intervals at the
four fixed thresholds are substantially narrower than the simultaneous bands computed over the continuous
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Fig. 5. For the VAX004 trial data, (a) shows 95% pointwise (dashed lines) and simultaneous (dotted lines) confi-

dence intervals about VEITT(36, xvl) for xvl ranging between 1500 and 55 000 copies/ml on the log10 scale. Solid
lines denote estimates of VEITT(36, xvl). Bold vertical segments are 95% simultaneous confidence intervals for
VEITT(36, xvl) for xvl set at log10 1500, 10 000, 20 000 and 55 000 and (b) shows the comparable analysis of
VE(14, xvl) for the failure time measured from infection diagnosis.

range of thresholds. This result suggests that one reasonable strategy for future vaccine trials is to apply
the procedure using a fixed set of several discrete thresholds that have clinical relevance, if available.

5. COMPLEMENTARY ASSESSMENTS OF POST-INFECTION VACCINE EFFECTS

Alternative approaches to studying vaccine effects on viral load and ART initiation include assessments
based on marginal distributions, cause-specific hazard functions or cumulative incidence functions. We
consider the value of these approaches. First, the assessment of the vaccine effect on the marginal dis-
tribution of the time to ART inititation provides important interpretable information, since ART initi-
ation itself, regardless of reason, is a clinically significant endpoint. This marginal analysis should be
done in addition to the composite endpoint analysis. Second, the assessment of the vaccine effect on the
marginal distribution of the time-to-viral failure is of little value unless the post-infection follow-up period
is very long, because very few viral failure events will occur after ART initiation within a 1–2 year time
period. Third, given the arguments made above for focusing inferences on vaccine efficacy parameters
that are cumulative rather than instantaneous in time, assessment of cumulative incidence functions is
more pertinent than assessment of cause-specific hazard functions. It is informative to study the cumula-
tive incidence functions for viral failure, Fvl

k (t, xvl) = P{T̃k(xvl) � t, δvl
k = 1}, k = 1, 2, where δvl

k = 1
if failure is due to viral load > xvl and 0 if failure is due to ART initiation. The methods developed here
can be adapted to provide simultaneous confidence intervals for VEvl(t, xvl) = 1 − Fvl

1 (t, xvl)/Fvl
2 (t, xvl)

in xvl. Plotting estimates of both VE(τ, xvl) and VEvl(τ, xvl) provides information on the degree to which
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vaccine efficacy to prevent the composite endpoint is due to prevention of viral failure. In addition, the
parameter PVEvl(t, xvl) = [Fvl

1 (t, xvl)/F1(t, xvl)]/[Fvl
2 (t, xvl)/F2(t, xvl)] can be shown to equal the rela-

tive probability (vaccine versus placebo) that a composite endpoint failure event by time t was due to viral
failure: PVEvl(t, xvl) = {δvl

1 = 1|T̃1(xvl) � t}/P{δvl
2 = 1|T̃2(xvl) � t}. This ratio can be interpreted as

the proportion of the efficacy to prevent the composite endpoint attributable to prevention of viral failure,

and estimates of it can also be plotted alongside V̂E(τ, xvl)and V̂E
vl
(τ, xvl) to provide complementary

information.

6. DISCUSSION

Future HIV vaccine efficacy trials are planned to operate under standardized ART initiation guidelines
based on viral load and/or CD4 cell count criteria. The guidelines used, and adherence to these guide-
lines, influence the interpretation of the composite endpoint analysis and the choice of virologic failure
thresholds xvl. Based on the current U.S. guidelines (DHHS Guidelines, 2002), it is sensible to assess
the composite endpoint for thresholds ranging up to xvl = 55 000 copies/ml. Because pre-ART virologic
failure above xvl for xvl � 55 000 usually precedes pre-ART CD4 decline <350 cells/mm3 (in fact the
contrary event never occurred in VAX004), if this guideline is followed, then estimates of VE(τ, xvl) for
xvl � 55 000 have clear interpretations as vaccine effects on the virologic failure rate with little or no con-
founding by treatment. Although an upper threshold xvl = 55 000 copies/ml was selected for VAX004
based on the current U.S. guidelines, it should be noted that this choice is somewhat arbitrary, because
standardized guidelines were not used for this trial, and prevailing opinions about when to start treatment
evolved during the 5 year period of the trial.

For future planned trials that will use standardized ART initiation guidelines, achieving high rates of
adherence to the guidelines will make the composite endpoint analysis easier to interpret. In the world’s
second HIV vaccine efficacy trial, conducted by VaxGen in intravenous drug users in Thailand from 1998
to 2003, the Thai government freely provided ART to infected participants whose CD4 declined below a
threshold. Adherence to this national guideline was perfect in that no participant initiated ART prior to
meeting the threshold. If there is substantial non-adherence to treatment initiation criteria in an efficacy
trial, then the value of the composite endpoint analysis erodes with the degree of non-adherence. In the
case that a large fraction of infected subjects start ART prior to meeting treatment criteria, the composite
endpoint analysis would contribute little independent information beyond the marginal analysis of ART
initiation.

The method developed here applies for analyzing a general composite endpoint defined as the first
event of ART initiation or any biomarker-defined endpoint. The method has been applied to assess the
first event of CD4 count failure (CD4 count < xCD4 ∈ [200, 500] cells/mm3) or ART initiation in the
VaxGen Thai trial (unpublished data). Like viral load, CD4 cell count is highly prognostic for progression
to AIDS and death (cf. Mellors et al., 1997; HIV Surrogate Marker Collaborative Group, 2000), and
based on some studies may be a better predictor of AIDS than viral load near the time of AIDS (Lyles
et al., 2000; HIV Surrogate Marker Collaborative Group, 2000). In many developing countries including
Botswana, South Africa, Thailand and Uganda, criteria for providing ART through national programs
are based on CD4 cell count thresholds but do not consider viral load information. In trials where such
treatment policies are operative, analysis of the CD4 cell count/ART initiation composite endpoint may
be easier to interpret and have a more direct link to progression to AIDS/death than the analysis of the
viral load/ART initiation composite endpoint. A drawback of the CD4-based composite endpoint is that in
some trial populations the rate of CD4 cell count decline is quite low (this result was observed in VAX004,
with 26% of infected subjects reaching CD4 < 350 cells/mm3 by 24 months), which restricts the power of
the composite endpoint analysis. However, in some populations (e.g. in developing countries) CD4 cells
may decline quickly enough to give the analysis reasonably high power; in the VaxGen Thai trial 55% of
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infected subjects reached CD4 < 350 cells/mm3 by 24 months. In any case, any efficacy trial is expected
to collect data on both viral load and CD4 cell counts, and analyses of composite endpoints based on both
biomarkers will likely be useful for inferring HIV vaccine effects on HIV progression and transmission.
The ongoing HIV vaccine efficacy trial in Thailand is using a composite endpoint that includes all three
events, ART initiation, viral failure and CD4 failure.

This article has focused on studying VE(t, xvl) at the latest time point of follow-up after infection diag-
nosis t = τ . This analysis has greatest importance, because efficacy at later time points predicts greater
clinical benefit, and implies greater robustness of the vaccine’s efficacy to the possible development of
vaccine resistance. It is also of interest to study VE(t, xvl) over time t , to assess if and how efficacy wanes
over time. For a fixed threshold xvl, the procedure of Parzen et al. (1997) can be applied to obtain simul-
taneous confidence intervals for VE(t, xvl) for t in an interval [t1, t2]. Since Parzen et al.’s (1997) method
is based on the same technique used in this article (a martingale approximation and Gaussian multipliers),
and our convergence result (A.4) in the Appendix is uniform in t and xvl, it should be possible to combine
the two methods into a procedure for constructing a confidence region for VE(t, xvl) simultaneously in
both t ∈ [t1, t2] and xvl ∈ [xL

vl, xU
vl]. This is left as an open problem.

Finally, note that the proposed procedure can be used to construct simultaneous confidence bands for
Fk(τ, xvl) or for any continuous functional of F1(τ, xvl) and F2(τ, xvl); for example in some applications
it may be of interest to study F1(τ, xvl) − F2(τ, xvl).
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APPENDIX

We prove (2.1) and the weak convergence of U (xvl) and U∗(xvl). Note that T̃ki (xvl) increases as xvl
increases. Thus, Vk(xvl) = max1�i�nk X̃ki (xvl) increases as xvl increases. We have supxL

vl�xvl�xU
vl

I (Vk(xvl) < τ) � I (Vk(xL
vl) < τ) →p 0 as nk → ∞. By Corollary 3.2.1 (Fleming and Harrington

1991, p. 98), it follows that

√
nk(F̂(τ, xvl) − F(τ, xvl)) = Sk(τ, xvl)

√
nk

∫ τ

0

Ŝk(s−, xvl)

Sk(s, xvl)

I (Rk(s, xvl) > 0)

Rk(s, xvl)
dMk(s, xvl) + op(1),

(A.1)
where Mk(t, xvl) = Nk(t, xvl) − ∫ τ

0 Rk(s, xvl) d�(s, xvl).
Note that both Sk(t, xvl) and Ŝk(t, xvl) increase as xvl increases and that Sk(t, xvl) is continuous

on (t, xvl) ∈ [0, τ ] × [xL
vl, xU

vl]. Further, it is known (Fleming and Harrington, 1991) that sup0�t�τ

|Ŝk(t, xvl) − Sk(t, xvl)| →p 0 pointwise for xvl ∈ [xL
vl, xU

vl]. By some elementary analysis, we have
supxL

vl�xvl�xU
vl

sup0�t�τ |Ŝk(t, xvl) − Sk(t, xvl)| →p 0 as nk → ∞. Similar arguments lead to the conver-

gence of Rk(t, xvl)/nk to rk(t, xvl) in probability, uniformly in (t, xvl) ∈ [0, τ ] × [xL
vl, xU

vl].

Next, applying the modern empirical process theory (van der Vaart, 1998), we show that n−1/2
k

Mk(t, xvl) converges weakly to a mean-zero Gaussian process with continuous paths. Let

M∗
ki (u1, u2, v1, v2, v3) = Nki (u1, v1) −

∫ u2

0
Rki (s, v2) d�k(s, v3).

We have M∗
ki (t, t, x, x, x) = Mki (t, x). LetF be the class of coordinate projections such that ft,x (M∗

ki ) =
M∗

ki (t, t, x, x, x), for (t, x) ∈ [0, τ ] × [xL
vl, xU

vl]. Let 0 = t0 < t1 < t2 < · · · < tR = τ and xL
vl = x0 <

x1 < x2 < · · · < xM = xU
vl. By the monotone properties of Nki (t, xvl), Rki (t, xvl) and �k(t, xvl) on each
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coordinate, we have, for (t, x) ∈ [tr−1, tr ] × [xm−1, xm], Mki (t, x) � M∗
ki (tr , tr−1, xm−1, xm−1, xm) ≡

fu(M∗
ki ) and Mki (t, x) � M∗

ki (tr−1, tr , xm, xm, xm−1) ≡ fl(M∗
ki ). For any ε > 0, we can take the number

of grids, R and M , in t and in x to be at the order of 1/ε such that E( fu(M∗
ki ) − fl(M∗

ki ))
2 � ε under the

continuity assumptions on the distributions. Hence the bracketing number N[ ](
√

ε,F, L2(P)) is of the
polynomial order (1/ε)5, following the arguments in the proof of Theorem 19.5 and Example 19.6 (van
der Vaart, 1998). Therefore, the bracketing integral J[ ](1,F, L2(P)) < ∞. By the Glivenko–Cantelli

Theorem and Donsker’s Theorem (Theorems 19.4 and 19.5 of van der Vaart, 1998), n−1/2
k Mk(t, xvl) =

n−1/2
k

∑nk
i=1 M∗

ki (t, t, xvl, xvl, xvl) converges weakly to a mean-zero Gaussian process with continuous
paths, say Gk(t, xvl) on (t, xvl) ∈ [0, τ ] × [xL

vl, xU
vl].

Applying the Cramér–Wold device and Slutsky’s Theorem, we have

(
n−1/2

k Mk(t, xvl), Ŝk(t−, xvl), Rk(t, xvl)/nk

)
D−→ (Gk(t, xvl), Sk(t, xvl), rk(t, xvl))

on (t, xvl) ∈ [0, τ ]×[xL
vl, xU

vl]. By the strong embedding theorem (Shorack and Wellner, 1986, pp. 47–48),
we obtain in a new probability space almost sure convergence of an equivalent process(

n−1/2
k M∗

k (t, xvl), Ŝ∗
k (t−, xvl), R∗

k (t, xvl)/nk

)
−→ (G∗

k(t, xvl), Sk(t, xvl), rk(t, xvl))

uniformly in (t, xvl) ∈ [0, τ ] × [xL
vl, xU

vl], where (n−1/2
k M∗

k (t, xvl), Ŝ∗
k (t−, xvl), R∗

k (t, xvl)/nk) and

G∗
k(t, xvl) are equal in law to (n−1/2

k Mk(t, xvl), Ŝk(t−, xvl), Rk(t, xvl)/nk) and Gk(t, xvl), respectively.

Further, (n−1/2
k M∗

k (t, xvl), Ŝ∗
k (t−, xvl), R∗

k (t, xvl)/nk) and G∗
k(t, xvl) can be chosen to have the same sam-

ple paths as the original processes. Now, applying the Lemma of Bilias et al. (1997) and integration by
parts, we have

√
nk

∫ t

0

(
Ŝ∗

k (s−, xvl)

Sk(s, xvl)
− 1

)
I (R∗

k (s, xvl) > 0)

R∗
k (s, xvl)

dM∗
k (s, xvl)

a.s.−→ 0 (A.2)

and

n−1/2
k

∫ t

0

(
nk I (R∗

k (s, xvl) > 0)

R∗
k (s, xvl)

− 1

rk(s, xvl)

)
dM∗

k (s, xvl)
a.s.−→ 0, (A.3)

uniformly in (t, xvl) ∈ [0, τ ] × [xL
vl, xU

vl]. By (A.1),

√
nk(F̂(t, xvl) − F(t, xvl))

= Sk(t, xvl)
√

nk

∫ t

0

(
Ŝk(s−, xvl)

Sk(s, xvl)
− 1

)
I (Rk(s, xvl) > 0)

Rk(s, xvl)
dMk(s, xvl)

+ Sk(t, xvl)nk
−1/2

∫ t

0

(
I (Rk(s, xvl) > 0)

Rk(s, xvl)/nk
− 1

rk(s, xvl)

)
dMk(s, xvl)

+ Sk(t, xvl)nk
−1/2

∫ t

0

1

rk(s, xvl)
dMk(s, xvl) + op(1). (A.4)

The first two terms, as processes in (t, xvl), are equal in law to the left side of (A.2) and (A.3), respectively,
therefore converge to zero in probability uniformly in (t, xvl) ∈ [0, τ ]× [xL

vl, xU
vl] by (A.2) and (A.3). This

completes the proof of (2.1).
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The weak convergence of U (xvl) and U∗(xvl) can be proved similarly to that of n−1/2
k Mk(t, xvl),

k = 1, 2, using Lemma 1 of Sun and Wu (2003). We omit the details here.
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