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SUMMARY. Consider a study of two groups of individuals infected with a population of ge-

netically related heterogeneous mixture of viruses, and multiple viral sequences are sampled

from each person. Based on estimates of genetic distances between pairs of aligned viral

sequences within individuals, we develop four new tests to compare intra-individual genetic

sequence diversity between the two groups. This problem is complicated by two levels of de-

pendency in the data structure: (i) Within an individual, any pairwise distances which share

a common sequence are positively correlated; and (ii) For any two pairings of individuals

which share a person, the two differences in intra-individual distances between the paired in-

dividuals are positively correlated. The first proposed test is based on the difference in mean

intra-individual pairwise distances pooled over all individuals in each group, standardized

by a variance estimate that corrects for the correlation structure using U-statistic theory. The

second procedure is a nonparametric rank-based analog of the first test, and the third test

contrasts the set of subject-specific average intra-individual pairwise distances between the

groups. These tests are very easy to use and solve correlation problem (i). The fourth proce-

dure is based on a linear combination of all possible U-statistics calculated on independent,
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identically distributed sequence sub-datasets, over the two levels (i) and (ii) of dependencies

in the data, and is more complicated than the other tests but is generally more powerful.

Although the proposed methods are empirical and do not fully utilize knowledge from pop-

ulation genetics, the tests reflect biology through the evolutionary models used to derive the

pairwise sequence distances. The new tests are evaluated theoretically and in a simulation

study, and are applied to a dataset of 200 HIV sequences sampled from 21 children.

KEY WORDS: Correlated data; CTL epitope; HIV genetic diversity; Hypothesis testing;

Median test; Nonparametric statistics; Two-sample test; U-statistic; Wilcoxon test.
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1. Introduction

Consider a recent study of 21 children who were infected with HIV at birth. Each child

was dichotomized as slow/non-progressor (group 1; 9 children) or progressor (group 2; 12

children) based on the development of AIDS or death, immunologic parameters, and the

presence of clinical symptoms (Shankarappa et al., 2002). Using independent PCR amplifi-

cations to eliminate resampling of virus templates, between 3 and 11 HIV gag p17 sequences

were sampled per child, with mean 9.5 sequences. Sequences sampled from each individ-

ual formed monophyletic clusters consistent with their evolution from a unique common

ancestral sequence and an absence of multiple infections. Sequences were evaluated for dif-

ferences in regions predicted to encode 8-11 amino acid long epitopes recognized by cyto-

toxic T lymphocytes (CTLs). Predicted epitopes were identified using Epimatrix (De Groot

et al., 1997), a computer algorithm based on a database of peptides that have been previ-

ously characterized for their binding to various human leukocyte antigen (HLA) molecules.

For the purpose of this study, increased predicted binding to HLA is assumed to correlate

with enhanced probability of the peptide being recognized by CTL. Nucleic acid sequence

regions were portioned into those encoding potential CTL epitopes and those that did not,

concatenated, and used to derive pairwise sequence distances.

Genetic diversity of the viruses within a child is often described using the average or

median of the estimates of pairwise evolutionary distances between sequences. The goal of

our study was to assess if the level of HIV genetic diversity differed between the slow/non-

progressor and progressor groups, to help identify the role of viral evolution in HIV patho-

genesis (Shankarappa et al., 1999). This assessment can be based on a study of group-

contrasts D1
kij − D2

k′i′j′ or on the corresponding rank-based contrasts, where Dg
kij is the

distance between sequences i and j from child k in group g, g = 1, 2. Two layers of depen-

dency in the data structure complicate this problem: (i) Within child k, any two pairwise
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distances that share a sequence are positively correlated, i.e., cor(Dg
kij, D

g
ki′j′) > 0 whenever

i or j equal one of i′ or j ′; and (ii) Any two contrasts which involve a common individual

are positively correlated, i.e., cor(D1
kij − D2

li′j′, D1
k′ij − D2

l′i′j′) > 0 whenever k = k′ or

l = l′. One approach to avoid the problem of correlated data is to use a standard two-sample

test with the studied contrasts restricted to independent sub-samples of distances from each

group. However, such a test would be inefficient because it only uses information from a

subset of the available contrasts.

Another commonly employed approach to avoid the correlation problem is to use one

genetic distance value per sequence by comparing each sequence within a subject to a con-

sensus sequence derived for the subject’s pool. Alternatively, estimating branch lengths of

each sequence to the most recent common ancestor (MRCA) sequence derived from a phy-

logenetic analysis produces independent observations. While these methods are valid, they

suffer from other procedural and population genetic constraints. The consensus sequence

may not adequately represent the population because of its bias toward most frequently sam-

pled sequences, and is difficult to derive when the sequences exhibit high heterogeneity. Es-

timating branch lengths to MRCA is disproportionately influenced by outlier sequences. To

overcome these deficiencies, Nickle et al. (2003) outlined a Center of Tree (COT) approach

that minimizes the distance between sequences while being less influenced by outliers.

By considering codon as the unit of reference, genetic changes can be portioned into

synonymous and nonsynonymous substitutions. The ratio of relative rates of synonymous

and nonsynonymous substitutions has been used extensively in inferring the presence of se-

lection. Simple corrections for heterogeneity in rates of these substitutions, as provided by

Kimura 2-parameter and Jukes-Cantor models of evolution, have been shown to be unreal-

istic and potentially inaccurate (Muse, 1996; Zanotto, 1999). However, using programs like

Modeltest (Posada and Crandall, 1998), Paup∗ (Swofford, 2002), and PAML (Yang, 1997),
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it is possible to derive more accurate models of evolution and identify selection operating at

the level of individual amino acid sites (Nielsen and Yang, 1998). Such methods can be used

to construct biologically meaningful pairwise distance estimates; then, empirical tests can

be applied to the distances to provide biologically relevant comparisons of diversity between

populations.

In this article, we develop four new valid testing procedures for comparing pairwise

distances between groups. The first three tests accommodate the correlations (i) but not

(ii) and are very simple to use, and the fourth test accommodates both correlations (i) and

(ii) but is more complicated to use. The first procedure is referred to as a test of “pooled

mean diversities”, and is based on comparing the average of all within-individual pairwise

distances in group 1 to the average of all within-individual distances in group 2, standardized

by a variance estimate computed using U-statistic theory. The second procedure is referred to

as a test of “pooled median diversities”, and compares the ranks of the distances in group 2 to

the pooled-group median distance, with variance estimate computed by the same technique

used for the first statistic. The third test of “mean subject-specific diversities” compares

within-subect average diversities between the groups. The fourth procedure is based on a

linear combination of correlated test statistics, over the two levels of dependencies (i) and

(ii) in the data described above, and is referred to as the linear combination of U-statistics

(LCU) test. The elementary contributing test statistic for this procedure can be taken to be

any statistic within the family of two-sample U-statistics, which includes both the t-statistic

and the Wilcoxon rank sum statistic.

The new test procedures are described in Section 2. Through simulations, in Section

3 the power of the tests are compared to one another and to a standard t-test based on to-

consensus sequence distances. The procedures are applied to the HIV genetic distances

dataset in Section 4. The details about the covariance structure of the U-statistics for the
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LCU test are provided in an Appendix.

2. Valid Tests for Combining Correlated Test Statistics

Let M1 and M2 be the number of subjects in groups g = 1 and g = 2, respectively, and

let ng
k be the number of sequences for individual k in group g, k = 1, · · · , Mg. We develop

four tests, which for validity require the assumption of non-informative cluster sizes, i.e.,

the intra-individual sequence diversities do not depend on the number of sequences sampled

from individuals (Hoffman et al., 2001). Under informative cluster sizes, the tests can give

biased results if one group has systematically more sequences per person than the other

group.

2.1. Test of pooled mean diversities

To describe the first test, we first consider a general one-sample situation in which N

sequences are randomly sampled from a population, and all pairwise distances Dij are mea-

sured among the N(N − 1)/2 sequence pairs. Let µ be the true mean pairwise distance (i.e.,

pooled mean diversity). We derive estimates of µ and its variance.

The mean µ can be estimated by the empirical mean µ̂ = {N(N − 1)/2}−1
∑

i<j Dij.

The standard variance estimate of µ̂, σ̂2 = {N(N − 1)/2 − 1}−1
∑

i<j(Dij − µ̂)2, assumes

N(N − 1)/2 independent observations. This estimate is too small because it ignores the

positive correlation of distances Dij and Dik which share sequence i. On the other hand,

the variance estimate σ̂2 = (N − 1)−1
∑

i<j(Dij − µ̂)2 is too large unless the distances are

perfectly correlated.

U-statistic theory provides a way to derive the correct variance estimate of µ̂. The general

form of a U-statistic of order k with kernel h is

UN,k =

(
N

k

)
−1 ∑

i1<···<ik

h(Xi1 , · · · , Xik), (1)

where h(Xi1 , · · · , Xik) is a k-variate function which is symmetric in its arguments. For our
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application, k = 2, (Xi1, Xi2) = (Xi, Xj) represents a pair of sequences within a subject,

and µ̂ is a U-statistic with h(Xi, Xj) = Dij. The variance of UN,k (Lee, 1990) is given by

V ar(UN,k) =

(
N

k

)
−1 k∑

c=1

(
k

c

)(
N − k

k − c

)
σ2

c , (2)

with σ2
c = Cov(h(Xi1, · · · , Xik), h(Xi′

1
, · · · , Xi′

k
)) where c of the indices {i1, · · · , ik} and

{i′1, · · · , i′k} coincide. For k = 2, (2) simplifies to V ar(µ̂) = {N(N − 1)/2}−1{2(N −

2)σ2
1 + σ2

2}, where σ2
1 = Cov(Dij, Dik) is the covariance of two pairwise distances that

share one sequence i, and σ2
2 = V ar(Dij). Empirical estimates of σ2

1 and σ2
2 are

σ̂2
1 =

1

N(N − 1)(N − 2)/3 − 1

∑

i<j<l

{(Dij − µ̂)(Dil − µ̂) + (Dij − µ̂)(Djl − µ̂)}, (3)

σ̂2
2 =

1

N(N − 1)/2 − 1

∑

i<j

(Dij − µ̂)2. (4)

For the two-sample problem with groups g = 1, 2 with mean diversities µ1, µ2 and

N1, N2 sequences per group, an asymptotically standard normal test statistic for evaluating

H0 : µ1 = µ2 is given by

Tpoolmn =
µ̂1 − µ̂2[∑2

g=1{Ng(Ng − 1)/2}−1{2(Ng − 2)σ̂2
g1 + σ̂2

g2}
]1/2

. (5)

With ρg the correlation of two pairwise distances sharing a sequence in group g, if N ∗ =

∑2
g=1[{Ng(Ng − 1)/2}/{2(Ng − 2)ρ2

g + 1}] is large, then a standard normal critical value

can be used. Otherwise a t critical value can be used with degrees of freedom approximated

by a technique such as Satterthwaite’s method.

The procedure described above must be adapted slightly to fit our example because there

are multiple children within a group, and only pairwise distances between sequences within

the same individual are used. The number of intra-individual pairwise distances in group g

equals Npair
g =

∑Mg

k=1 ng
k(n

g
k − 1)/2, and µ̂g is obtained as the average of these distances.
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There are
∑Mg

k=1 2(ng
k − 2) covariance terms for intra-individual distances sharing one se-

quence, and therefore Tpoolmn = {µ̂1 − µ̂2}/{V̂ ar(µ̂1) + V̂ ar(µ̂2)}
1/2 is modified to

Tpoolmn =
µ̂1 − µ̂2[∑2

g=1

(
Npair

g

)−1
{∑Mg

k=1 2(ng
k − 2)σ̂2

g1 + σ̂2
g2

}]1/2
, (6)

with σ̂2
g1 = {

∑Mg

k=1 ng
k(n

g
k − 1)(ng

k − 2)/3 − 1}−1
∑Mg

k=1

∑
i<j<l{(D

g
kij − µ̂g)(D

g
kil − µ̂g) +

(Dg
kij − µ̂g)(D

g
kjl − µ̂g)} and σ̂2

g2 = {Npair
g − 1}−1

∑Mg

k=1

∑
i<j(D

g
kij − µ̂g)

2.

2.2. Test of pooled median diversities

Let ω denote the median of all within-individual pairwise distances pooled over both

groups. Consider the kernel h(Xi, Xj) = I(D2
ij ≤ ω), which indicates whether the pairwise

distance between sequences Xi and Xj in group 2 is less than or equal to the pooled median.

Then, P̂med2 = {N2(N2−1)/2}−1
∑

i<j I(D2
ij ≤ ω) is a rank-based U-statistic that estimates

Pmed2 = Pr(D2
ij ≤ ω). The same variance calculations used in Section 2.1 apply, yielding

V ar(P̂med2) = {N2(N2 − 1)/2}−1{2(N2 − 2)σ2
med21 + σ2

med22}.The variance of I(D2
ij ≤ ω)

is estimated by σ̂2
med22 = {Npair

2 /(Npair
2 − 1)}P̂med2(1 − P̂med2). Based on (3) with Dij

replaced with I(D2
ij ≤ ω), σ2

med21 is estimated by σ̂2
med21 =

1

N2(N2 − 1)(N2 − 2)/3 − 1

∑

i<j<l

{
I(D2

ij ≤ ω, D2
il ≤ ω) + I(D2

ij ≤ ω, D2
jl ≤ ω)

}
−(P̂med2)

2.

An asymptotically normal Z-statistic for testing H0 : Pmed2 = 1/2 is given by Tpoolmed =

(P̂med2 − 1/2)/(V̂ ar(P̂med2))
1/2. Adapted to our application with multiple individuals, this

test statistic equals

Tpoolmed =
P̂med2 − 1/2

[(
Npair

2

)−1 ∑M2

k=1{n
2
k(n

2
k − 1)/2}−1{2(n2

k − 2)σ̂2
med21 + σ̂2

med22}
]1/2

. (7)

2.3. Test of mean subject-specific diversities

The statistics Tpoolmn and Tpoolmed weight each intra-individual pairwise distance equally,

so that subjects with more sequences contribute more information. Alternative related test
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statistics that weight each subject equally treat the averages or medians of the pairwise dis-

tances within each subject as the observations. For example, the average diversity for subject

k in group g is µ̂gk = {ng
k(n

g
k − 1)/2}−1

∑
i<j Dg

kij, and a test can be designed to compare

the two i.i.d. samples µ̂11, · · · , µ̂1M1
and µ̂21, · · · , µ̂2M2

.

The U-statistic variance calculations of Section 2.1 imply that the variance of the “mean

of the averages”, M−1
g

∑Mg

k=1 µ̂gk, is M−2
g

∑Mg

k=1{n
g
k(n

g
k − 1)/2}−1{2(ng

k − 2)σ2
gk1 + σ2

gk2}.

Then, a standardized test statistic for comparing mean subject-specific diversities is given by

Tsubjmn =
M−1

1

∑M1

k=1 µ̂1k − M−1
2

∑M2

k=1 µ̂2k[∑2
g=1 M−2

g

∑Mg

k=1{n
g
k(n

g
k − 1)/2}−1{2(ng

k − 2)σ̂2
gk1 + σ̂2

gk2}
]1/2

, (8)

where σ̂2
gk1 and σ̂2

gk2 are equal to σ̂2
g1 and σ̂2

g2 as in (3) and (4), with sums restricted to

pairwise distances on subject k′s sequences. For balanced data (equal number of sequences

per subject), Tsubjmn = Tpoolmn; for unbalanced data the testing procedures differ.

2.4. Linear combination of U-statistics (LCU) test

The derivation of the LCU test statistic is outlined in four steps:

Step 1: Consider the comparison of intra-individual distances between person i in group 1

and person j in group 2. For each person, consider a maximal sub-collection of pairwise

distances calculated from his or her set of sequences that is genuinely an i.i.d. sample (illus-

trated in Figure 1A; a sample is i.i.d. if no two distances share a sequence). From the two

samples of distances, calculate a two-sample U-statistic.

Step 2: Given the two individuals i and j considered in Step 1, linearly combine all possible

U-statistics formed from the different ways of taking maximal i.i.d. samples of pairwise

distances from each individual. The variance of the resulting statistic Vij can be estimated

using the limiting multivariate normal distribution of the vector of U-statistics.

Step 3: Consider a “correspondence pairing” between the M1 individuals in group 1 and

M2 individuals in group 2, with M1 ≤ M2. The correspondence pairing is a mapping that
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connects each individual in group 1 with a unique individual in group 2 (illustrated in Figure

1B). For each pair of individuals (with one in each group), the Vij-statistic described in Step 2

is calculated. Then, a new statistic is formed as the average of the V ′

ijs over the distinct pairs

of individuals in the correspondence pairing, weighted by the inverse variance estimates.

Step 4: Linearly combine all possible weighted average statistics formed from different

correspondence pairings. Form the LCU Z-statistic by dividing this linear combination by an

estimate of its standard deviation, which is calculated using the limiting multivariate normal

distribution of the vector of weighted average statistics.

Note that in Steps 2 and 4, a linear combination of dependent statistics is taken, and

U-statistic theory is needed to characterize the limiting distribution of the combination. In

contrast, in Step 3 a linear combination of independent statistics is taken. Further note that

in Steps 2 and 4, the linear combinations sum over (n1
i )

pair
× (n2

j)
pair and M2!/(M2 − M1)!

terms, respectively, where (ng
k)

pair is the number of different ways of taking a maximal i.i.d.

sample of pairwise distances from individual k in group g. The number (ng
k)

pair is equal

to the product of odd integers ≤ ng
k. For example, Patient 1 in Figure 1A has 9 sequences,

and there are 9 ∗ 7 ∗ 5 ∗ 3 = 945 ways to sample 4 pairwise distances that do not share any

sequences. If the average number of sequences per person is n̄, then the LCU Z-statistic

sums over approximately M = {(n̄)pair}
2
M2!/(M2 − M1)! elementary statistics. Because

M can be huge, the computation time can be prohibitive; in this case the LCU test statistic

can be based on a random subset of the possible correspondence pairings for Step 4 and on

a random subset of the possible maximal i.i.d. samples of pairwise distances between each

pair of individuals within a correspondence pairing for Step 2. This approach is analogous

to a Monte Carlo permutation test in which a random sample of the possible permutations

are used. For both procedures, taking enough random samples assures that the result is

insensitive to the particular samples taken. In Sections 3 and 4 we consider what constitutes
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sufficient samples for the LCU test.

FIGURE 1 HERE

We now develop the LCU test in more detail. Let SP 1
i denote the collection of the

(n1
i )

pair i.i.d. pairwise distance samples for individual i in group 1, and SP 2
j denote the col-

lection of the
(
n2

j

)pair
i.i.d. pairwise distance samples for individual j in group 2. In Step 1,

for each pair of sets (SPik, SPjl) ∈ (SP 1
i , SP 2

j ), a two-sample U-statistic Uijkl can be used

to test if intra-individual distances calculated between the pairs of sequences in SPik for in-

dividual i in group 1 differ in distribution from intra-individual distances calculated between

the pairs of sequences in SPjl for individual j in group 2. In Step 2, we linearly combine

a random sample (or the full sample) of the (n1
i )

pair
× (n2

j)
pair possible unique U-statistics

formed from the pairs of sets {(SPik, SPjl) : k = 1, · · · , (n1
i )

pair
, l = 1, · · · , (n2

j)
pair}.

Set Vij =
∑

(SPik ,SPjl)∈(SP 1

i ,SP 2

j ) ŵijklUijkl, where the weight ŵijkl may be data-dependent.

Let Λij be the covariance matrix of the complete vector of U-statistics composed of the

elements {Uijkl : (SPik, SPjl) ∈ (SP 1
i , SP 2

j )}. Under the null hypothesis of no group dif-

ference in intra-individual distance distributions, the LCU statistic Zij = Vij(ŵ
′

ijΛ̂ijŵij)
−

1

2

is approximately standard normally distributed, where Λ̂ij is an estimate of Λij and ŵij is

the vector with elements {ŵijkl : (SPik, SPjl) ∈ (SP 1
i , SP 2

j ), k = 1, · · · , (n1
i )

pair
, l =

1, · · · , (n2
j)

pair}. The elements of Λ̂ij are given in the Appendix by formulas (13) and (14).

The test statistic Zij is equivalent to the test statistic proposed by Wei and Johnson (1985)

for combining dependent U-statistics across repeat measurement times; the difference is that

our statistic combines over sets of sequence pairs instead of measurement times.

The simplest and most easily interpreted combined statistic Zij weights all U-statistics

equally, i.e. with all ŵijkl = 1. Alternatively, the weights ŵijkl may be chosen as inverse

variance estimates of the Uijkl, or to optimize the statistical power of the test for detecting a
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Pitman shift alternative hypothesis (Pitman, 1939; Lehmann, 1975). Wei and Johnson (1985)

described the general form of the optimal weight functions, and the specific forms for the

cases of combining Wilcoxon statistics and of combining t-statistics.

To combine the test statistics Zij calculated from different individuals (Step 3), let CPz

denote a correspondence pairing between the M1 individuals in group 1 and M2 individuals

in group 2 (illustrated in Figure 1B). Let CP denote the collection of all unique sets CPz.

Define a weighted average statistic V̄z by

V̄z =

∑
(i,j)∈CPz

V̂ ar
−1

(Vij)Vij

∑
(i,j)∈CPz

V̂ ar
−1

(Vij)
, (9)

and a standardized version Zz = V̄z/

√
V̂ ar(V̄z), which equals

Zz =

∑
(i,j)∈CPz

V̂ ar
−1

(Vij)Vij

(∑
(i,j)∈CPz

V̂ ar
−1

(Vij)
[
1 +

∑
(i′,j′)∈CPz

V̂ ar
−1

(Vi′j′)Ĉov(Vij, Vi′j′)
])1/2

, (10)

where expressions for Cov(Vij, Vi′j′) and its estimate are given in the Appendix. Each statis-

tic Zz is asymptotically standard normal under H0. Now, for Step 4 define an overall test

statistic VLCU by

VLCU =
∑

CPz∈CP

ŵ?
zZz, (11)

where ŵ? = (ŵ?
z : CPz ∈ CP )′. Since each statistic Zz has unit variance, a reasonable

choice of weight functions is ŵ∗

z = 1 for all CPz. The covariance matrix Λ? for the vector

Z = (Zz : CPz ∈ CP )′ can be estimated by substituting estimates into the covariance for-

mulas (15)-(19) in the Appendix. Then under H0, the statistic ZLCU = VLCU(ŵ?′Λ̂?ŵ?)−1/2

is asymptotically standard normal and provides an overall test of H0 using all of the avail-

able data. If the normality assumption is in question, significance levels of the test could be

approximated using a Monte Carlo permutation procedure; however, currently this approach
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would be excessively burdensome computationally. Therefore, currently the most useful

application of the LCU test is to datasets with moderate-to-large sample sizes.

For large datasets, the LCU test is computationally burdensome even if an asymptotic

critical value is used, in which case it may be necessary to use limited random samples of

U-statistics in the test statistic. Use of a random sample of comparisons may make the test

performance sensitive to the particular samples used if some pairwise comparisons are espe-

cially informative or are outliers. These considerations support using large random samples

in the LCU test procedure; in fact the procedure should not be used if the result is sensitive

to the particular random samples used. In practice the procedure can be repeated for several

sets of random samples to verify reliability of the outcome. Based on the Example dataset,

with Nstep2 the number of U-statistics linearly combined in Step 2 and Nstep4 the number of

statistics Zz linearly combined in Step 4, we have found that selecting Nstep2 and Nstep4 at

least 100 produces stable answers that do not depend appreciably on the particular random

samples used.

R and Fortran implementations of the testing procedures are available upon request.

3. EVALUATION OF POWER OF THE TEST STATISTICS

Using limited random samples for the LCU test may reduce its power. To evaluate this

possibility, we examined ratios of the variance of ZLCU for the maximal numbers Nstep2 and

Nstep4 versus the variance of ZLCU for smaller numbers Nstep2 and Nstep4. With M1 = M2,

K (L) the number of sequences per person in group 1 (2), variance σ2
12(σ

2
22) for an intra-

subject pairwise distance in group 1 (2), covariance σ2
11(σ

2
21) for two intra-subject pairwise

distances that share a sequence in group 1 (2) (with ρ2
g ≡ σ2

g1/σ
2
g2), covariance σ2

V 1 for V̄z

and V̄z′ (with ρ2
V = σ2

V 1/V ar(V̄z)), the variance expression is given by

V ar(ZLCU) =
1 + ρ2

V (Nstep4 − 1)

M1Nstep2Nstep4

[
(Nstep2 − 1)ρ2

1 + 1

[K/2]
σ2

12 +
(Nstep2 − 1)ρ2

2 + 1

[L/2]
σ2

22

]
,(12)
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where [x] is the integer part of x. We suppose equal variance parameters for the two groups,

with values estimated based on the DNA distance data of the slow/non-progressor group

studied in the Example. This yields σ2
12 = σ2

22 = 0.0003316. Since Vz and V̄z′ share many

pairwise distances, the correlation ρV may be expected to be high; we choose ρV = 0.80.

For M1 = M2 = 10, K = L = 8, and Nstep2 = Nstep4 = 50, the variance ratio

ranged monotonically from 0.47 for zero correlation ρg = 0 to 0.99 for perfect correlation

ρg = 1, with ratio 0.64, 0.87, 0.96, 0.98, 0.99 for ρg = 0.10, 0.25, 0.50, 0.75, 0.90, respec-

tively. Thus, the variance is 1-53% greater for 50 versus complete samples, and the inflation

depends on the strength of correlation. When Nstep2 = Nstep4 are increased to 100, the vari-

ance ratio increases to 0.95, 0.97, > 0.99 for correlation 0.10, 0.25, > 0.50, respectively.

Therefore using at least 100 samples makes the variance inflation quite small.

Next, a simulation study was carried out to compare the power of the newly proposed test

statistics Tpoolmn and Tpoolmed. In addition, we consider a procedure commonly used in the

literature, a two-sample t-statistic Tcons used for comparing the n1
c =

∑M1

k=1 n1
k distances to

consensus sequences in group 1 to the n2
c distances to consensus sequences in group 2. Since

the tests evaluate different hypotheses that reflect different scientific/biological questions,

the procedures should not be viewed as competitors on an equal footing; nevertheless, infor-

mation on relative power is helpful for guiding use of the tests. In particular, to-consensus

distances and pairwise distances are biologically different ways to measure diversity, so that

Tcons should be viewed as distinct in purpose relative to the other statistics. The statistic Tsubj

was not included in the simulations because it is equivalent to Tpoolmn for balanced data, and

ZLCU was not included because of the relatively large computational burden.

Data were simulated under parameters estimated using the DNA data for the slow/non-

progressor group in the Example: The pairwise distance differences for group 1 were sim-

ulated as N(−0.001243, 0.0003316) with inter-subject correlation 0 and correlation 0, 0.25,
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or 0.50 for intra-subject pairwise distances that share a sequence, and the to-consensus dis-

tances in group 1 were simulated as independent N(−0.0044, 0.0001927). The group-size

M1 = M2 was selected as 5, 10, or 15, and the number of sequences per subject K as 4, 8, or

12. The group 2 distances were simulated using the same models with mean-shifts ∆ equal

to 0.7, 0.6, and 0.4 standard deviations above the group 1 mean for K = 4, 8, and 12, re-

spectively. Power was estimated as the fraction of test statistics computed on 1000 simulated

datasets that exceeded 1.96 in absolute value.

The estimated powers are shown in Figure 2. With 4 sequences per subject, Tcons is con-

sistently more powerful than Tpoolmn and Tpoolmed. For low levels of correlation, Tpoolmn and

Tpoolmed achieve greater power than Tcons as the number of sequences per subject increases.

The power of the pooled statistics Tpoolmn and Tpoolmed decreases markedly with the degree

of positive correlation, while the power of Tcons is independent of the correlation. Conse-

quently, the test of to-consensus distances is considerably more powerful than the tests of

pooled pairwise distances for highly correlated data, but the pooled tests are more powerful

for lightly correlated data, with efficiency advantage increasing with the ratio of the num-

ber of sequences per subject versus the number of subjects. The pooled test of means is

more powerful than the pooled median test for independent or lightly correlated distances;

this result is related to the fact that the pairwise distances were simulated under a normal

mean-shift model.

FIGURE 2 HERE

4. Example

We developed the testing procedures to analyze the HIV genetic distances dataset described

in the Introduction; we now apply them to this dataset. First, a meaningful measure of

genetic distance should be defined in the context of the goal of the study, which is to look
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for differences between CTL epitope encoding regions and others. Sequence regions with

CTL epitopes are of interest because the host immune system targets HIV-infected cells

by recognizing epitope sequences on the cell’s surface, and these immune responses have

been shown to be the most potent form of control against HIV. Therefore, HIV vaccines

under development are being specifically designed to elicit cell-mediated immune responses

to help protect against HIV disease (cf., Nabel, 2001). The 200 sampled sequences were

codon-aligned and partitioned into two sets of regions: those predicted to bind HLA encoded

by the child, and regions outside the predicted epitopes. HLA binding strength was treated

as a surrogate for CTL epitopes, and computed using published algorithms (De Groot et

al., 1997; Schafer et al., 1998). The regions were separated, and each was concatenated,

to form CTL and non-CTL sequence regions for each child. Genetic distances between

pairs of HIV DNA sequences within a child were estimated under the Kimura 2-parameter

model of evolution, separately for the two sets of regions. In addition, nonsynonymous

and synonymous distances were estimated for each set of regions using the Jukes-Cantor

correction for multiple substitutions as implemented in MEGA software (Kumar et al., 2001).

Given one of the aforementioned metrics, Dg
kij was taken to be the difference between the

two pairwise distances computed on predicted CTL epitope and non-CTL epitope regions.

In addition, majority consensus DNA sequences were derived and the to-consensus DNA

distances were computed for CTL and non-CTL regions for each subject in each group, and

the differences Dg
ki;cons were constructed. Nonsynonomous and synonomous distances to

consensus were not computed because of the difficulties associated with deriving consensus

codon sequences. We hypothesized that the level of intra-individual diversity as measured

by Dg
kij, or by Dg

ki;cons, would differ between slow/non-progressors and progressors.

Figure 3 shows boxplots of all intra-child DNA, nonsynonymous, and synonymous pair-

wise difference measures Dg
kij for the two groups. In addition, a boxplot is shown for the
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to-consensus DNA distance differences. Descriptive analyses and naive two-sample t-tests

did not suggest differences between the groups in the difference measures based on over-

all DNA genetic distance or on nonsynonymous distance (p > 0.10), but they did suggest

a difference with respect to the synonymous distance (p = 2.2 × 10−6, sample means -

0.0113 and 0.00713 for the slow/non-progressor and progressor groups). The naive t-tests

compare the 387 total differences in the slow/non-progressor group with the 523 total differ-

ences in the progressor group, and require the assumption of independence for all difference

measurements. However, there are only 21 individuals, and the positive correlation of pair-

wise distance differences within individuals (estimated correlations 0.55 and 0.61 for the

slow/non-progressor and progressor groups) implies that the small p-value obtained for the

synonymous difference comparison grossly overstates the significance. We re-assess the re-

sults using the valid methods outlined here, with emphasis on the synonymous difference

measures. The slow/non-progressors and progressors had comparable numbers of sequences

per child (average 9.1 and 9.8 sequences per child, respectively, and 20 of 21 children had

between 9 and 11 sequences), and there was no apparent association between intra-individual

sequence diversities and sequence number. Therefore, the cluster sizes were evidently non-

informative, and the testing procedures can be validly applied to the data.

FIGURE 3 HERE

For DNA, nonsynonomous, and synonomous pairwise distance differences, respectively,

the pooled mean diversity test gave results Tpoolmn = −1.04 (p = 0.30, µ̂1 = −0.0012, µ̂2 =

0.00015), Tpoolmn = −0.21 (p = 0.83, µ̂1 = 0.000052, µ̂2 = 0.00025), and Tpoolmn = −0.58

(p = 0.56, µ̂1 = −0.011, µ̂2 = 0.0069). The pooled median diversity test yielded Tpoolmed =

−0.73 (p = 0.46, medians -0.00090 and 0.00010), Tpoolmed = 1.27 (p = 0.20, medians

0.0 and 0.0), and Tpoolmed = −0.39 (p = 0.70, medians -0.012 and 0.0), and the subject-
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specific mean diversity test gave Tsubj = −1.09 (p = 0.28), Tsubj = −0.70 (p = 0.49),

and Tsubj = −1.91 (p = 0.057). Therefore, there are no significant differences by DNA or

nonsynonomous pairwise distances. For to-consensus DNA distances, no differences were

found by the t test, with Tcons = −1.42 (p = 0.16, µ̂c
1 = −0.0044, µ̂c

2 = −0.0016), and

a Wilcoxon test was borderline significant (p = 0.038). The subject-specific diversity test

showed a trend towards larger synonomous pairwise distance differences in progressors than

slow/non-progressors (p = 0.057), but the pooled mean and median diversity tests did not

support a group difference; this discordant result could be related to the relatively low power

of the pooled procedures when the degree of positive correlation is high (estimated at ≈

0.60).

Next, for synonomous distances we applied the LCU test based on ZLCU . Wilcoxon U-

statistics were used, and in Steps 2 and 4 the weights ŵijkl and ŵ∗

z were set to one. Linear

combinations in Step 2 were taken over Nstep2 = 100 Wilcoxon statistics based on 100

random samples of maximal i.i.d. pairwise distances from the individuals i and j, and in Step

4 were taken over Nstep4 = 100 statistics Zz based on 100 randomly sampled correspondence

pairings of individuals. For the first 20 correspondence pairings CPz, Figure 4 shows the

histogram of the Z-statistics Zij calculated in Step 2, with the stratified Z-statistic Zz of (10)

indicated with a bold vertical segment. The 100 statistics Zz ranged from -1.14 to -0.22

and the overall Z-statistic ZLCU took value -0.539, with two-sided p-value 0.59. Therefore,

this test gave a similar result as the pooled mean and median tests, and did not suggest

differences in levels of synonymous substitutions within predicted CTL epitope relative to

non-CTL epitope regions in progressors as compared to slow/non-progressors. The test was

repeated five times using different random seeds, and the resulting Z-statistic was always

within 0.05 of -0.539, demonstrating that the result was not sensitive to the particular choice

of random samples.
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Although a number of experimental and population genetic methodological issues are

not addressed in this study and could have potentially contributed to the results of the tests,

these results along with the documented significance of CTL reactivity in the control of virus

replication support studies to more rigorously identify CTL epitopes at the level of individual

or group followed by validation of these differences using population genetic approaches.

FIGURE 4 HERE

5. Discussion

In this article, we present several valid testing procedures for comparing intra-individual se-

quence diversity between two populations. The tests for comparing pooled mean diversities,

pooled median diversities, and mean subject-specific diversities, are simple to use. The LCU

test is more complicated but incorporates the most information and thus sometimes provides

greater power. Given the computational burden of the LCU test, it currently requires cod-

ing in a fast language such as Fortran, and to ensure reliable results should only be used

with at least 100 samples in each of Steps 2 and 4 of the procedure. The power of each

test decreases with the degree of positive correlation of intra-individual pairwise distances

that share a sequence. We compared the new tests to a standard t-test for comparing mean

to-consensus distances between groups, and showed that the new procedures are more pow-

erful when the correlation of distances is low-to-moderate. The power of t or Wilcoxon tests

for to-consensus distances is independent of pairwise correlations; thus these procedures are

relatively most powerful when the pairwise distances are highly correlated. In applications it

may be useful to estimate the correlations to judge the relative power of the test procedures.

We also found that the comparative power of the new methods based on pairwise distances

versus the to-consensus method is greater for larger ratios of the number of sequences per

subject to the number of subjects.
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Although this article focuses on hypothesis testing, the pooled mean and mean subject-

specific methods directly provide point and interval estimates of the group difference in

pooled mean diversity and in mean subject-specific diversity, respectively. Moreover, the

LCU test statistic can be inverted to obtain point and interval estimates of the location dif-

ference in diversities.

The purpose of this report is to provide valid empirical two-sample tests for comparing

pairwise genetic distances. Studies of viral diversity are challenged by the facts that het-

erogeneous sequences derived from an individual share a common ancestor sequence, and

viral diversity increases over time within individuals. The former issue implies a level of

non-independence not addressed by the proposed methods, and the latter issue implies that

diversity depends on the time between infection and sampling. The latter problem could be

addressed by extending the current methods to allow adjustment for sampling time and other

covariates. Furthermore, the methods we used to derive pairwise DNA as well as synony-

mous and nonsynonymous distances have a number of population genetic issues that are not

addressed. For instance, we used simple models of substitution (Kimura 2-parameter and

Jukes-Cantor) that do not account for rate heterogeneities and are at best limited approxima-

tions of the true models of evolution. Similarly, there is considerable uncertainty about the

efficiency with which true CTL epitopes are identified by Epimatrix, or for that matter, any

of the other available prediction methods. CTL epitopes in HIV have a strong tendency to

cluster within conserved regions of the viral genome (Yusim et al., 2002) and such conser-

vation had been hypothesized as an adaptation on the part of the host to constrain immune

escape by the pathogen (da Silva and Hughes, 1998). However, it remains to be seen if the

CTL epitopes documented in HIV literature represent a highly biased set since most labora-

tory studies have used laboratory or subtype consensus sequences while it has been shown

recently that nearly 30% more CTL epitopes would be identified when reagents based on
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autologous sequences, as opposed to the subtype consensus, were used (Altfeld et al., 2003).

Our basic approach to testing, to average pairwise distances or their ranks and to accom-

modate the correlation structure by U-statistic variance calculations, can be applied to many

other analyses of sequence diversity. For example, because the Kruskal-Wallis test statistic

for comparing K groups is a K-sample U-statistic, a testing procedure for comparing intra-

individual sequence diversity between K groups can be constructed along the same lines.

In addition, the one-sample t and Wilcoxon signed rank statistics are U-statistics, and valid

linear combination of U-statistics tests could be constructed for assessing whether the mean

or location center of intra-individual pairwise sequence distance is different from some fixed

value.

The methods developed here have special significance for HIV vaccine efficacy trials

because of the unique features associated with HIV vaccines. Available evidence in human

and animal studies suggest that leading HIV vaccine candidates may fail to prevent HIV

infection, but could mitigate the disease course of HIV and diminish infectiousness, such as

by reducing HIV viral load (Gilbert et al., 2003). Since many vaccine recipients may become

infected in efficacy trials, it would be extremely useful to compare genetic changes within

true CTL epitopes among individuals receiving vaccine to unvaccinated individuals. Such

an analysis could help identify the immunologic and virologic bases for protection and the

methods outlined here would be important in establishing these relationships.
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APPENDIX: DERIVATION OF LINEAR COMBINATION OF U-STATISTICS (LCU) TEST

Let Si = [n1
i /2] be the maximum size of an i.i.d. sample of pairwise distances from in-

dividual i in group 1, and similarly let Tj = [n2
j/2] for individual j in group 2; [x] is the

integer part of x. Let S be the maximum of the Si for individuals in group 1, and (n1)pair

be the maximum of the (n1
i )

pair for individuals in group 1. Define T and (n2)pair similarly

for group 2. For measurements from individuals in group 1, let Xisk denote the distance

between the s’th sequence pair from the k′th arrangement of unique sequence pairs from

individual i (i = 1, · · · , M1, s = 1, · · · , S, k = 1, · · · , (n1)pair). For measurements from in-

dividuals in group 2, let Yjtl denote the distance between the t’th sequence pair from the l′th

arrangement of unique sequence pairs from individual j (j = 1, · · · , M2, t = 1, · · · , T, l =

1, · · · , (n2)pair). Let Xis = (Xisk : k = 1, · · · , (n1)pair)′(i = 1, · · · , M1, s = 1, · · · , S)

and Yjt = (Yjtl : l = 1, · · · , (n2)pair)′(j = 1, · · ·M2, t = 1, · · · , T ) denote independent

random samples with distribution functions F and G whose marginals are denoted by Fk

and Gl, respectively (k = 1, · · · , (n1)pair, l = 1, · · · , (n2)pair). With M the maximum of

(n1)pair and (n2)pair, the null hypothesis to test is H0 : F (s1, · · · , sM) = G(s1, · · · , sM)

for all s1, · · · , sM ∈ RM . The null hypothesis assumes exchangeability in that the X ′

iss

and Y ′

jts have equal marginal distributions. It also assumes that the distributions Fi and Gj

are the same for all indices i = 1, · · · , M1, j = 1, · · · , M2. The data of some components

of Xis and Yjt will be missing for individuals with fewer sequences than the person with

the most sequences in the respective groups. Set the indicator function δisk to 1 if Xisk is

observed, 0 otherwise, and define εjtl similarly for Yjtl. The indicators δis = (δisk : k =

1, · · · , (n1)pair)′(i = 1, · · · , M1, s = 1, · · · , S) and εjt = (εjtl : l = 1, · · · , (n2)pair)′(j =

1, · · · , M2, t = 1, · · · , T ) are assumed to be independent random samples from possibly

different populations, and to be independent of the underlying vectors Xis and Yjt.

Consider the i’th individual in group 1 and the j’th individual in group 2. For each
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(SPik, SPjl) ∈ (SP 1
i , SP 2

j ), consider a two-sample U-statistic with kernel φ :

Uijkl =
√

Q {ST}−1
S∑

s=1

T∑

t=1

δiskεjtl {φ(Xisk, Yjtl) − θijkl}

with θijkl = E{φ(Xsk, Ytl)} and Q = S + T. Under H0, let θijkl = θijkl0, a known constant,

and let Uijkl = Uijkl0. The distribution of intra-individual distances calculated from the set

of sequence pairs (s, t) ∈ (SPik, SPjl) differs between the two populations if θijkl 6= θijkl0.

For given distribution functions F and G, under the hypotheses

E{φ2(Xisk, Yjtl)} < ∞ ((s, t) ∈ (SPik, SPjl))

and S/T converges to a constant ρ ∈ (0, 1), the multivariate U-statistic

(Uijkl : (SPik, SPjl) ∈ (SP 1
i , SP 2

j ))′ ∈ R(n1)pair(n2)pair

converges to a mean-zero multivari-

ate normal distribution. Let Λij = ((σ2
ijkk′ll′)), i = 1, · · · , M1, j = 1, · · · , M2, (SPik, SPjl),

(SPik′, SPjl′) ∈ (SPi, SPj) be the limiting covariance matrix under H0. If in addition

E{φ4(Xisk, Yjtl)} < ∞ ((s, t) ∈ (SPik, SPjl)),

then σ2
ijkk′ll′ is consistently estimated by σ̂2

ijkk′ll′ = (Q/S)σ̂2
1ijkk′ll′ + (Q/T )σ̂2

2ijkk′ll′. Here,

σ̂2
1ijkk′ll′ = {ST (T − 1)}−1

∗
∑

1

δiskδisk′εjtlεjt′l′{φ(Xisk, Yjtl) − θijkl0}{φ(Xisk′, Yjt′l′) − θijk′l′0} (13)

and

σ̂2
2ijkk′ll′ = {TS(S − 1)}−1

∑

2

δiskδis′k′εjtlεjtl′{φ(Xisk, Yjtl) − θijkl0}{φ(Xis′k′, Yjtl′) − θijk′l′0} (14)

where
∑

1 denotes summation over s = 1, · · · , S and t 6= t′ = 1, · · · , T ; and
∑

2 denotes

summation over t = 1, · · · , T and s 6= s′ = 1, · · · , S.
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For the statistic Vij =
∑

(SPik ,SPjl)∈(SPi,SPj)
ŵijklUijkl0, the possibly data-dependent

weight ŵijkl is assumed to converge in probability, as Q → ∞, to a deterministic quan-

tity wijkl that is a function of the underlying distributions F and G under H0. If Λij is pos-

itive definite then under H0 the statistic Zij = Vij(ŵ
′

ijΛ̂ijŵij)
−

1

2 has a limiting standard

normal distribution, as Q → ∞, where ŵij = (ŵijkl : (SPik, SPjl) ∈ (SP 1
i , SP 2

j ))′ ∈

R(n1)pair(n2)pair

and Λ̂ij = ((σ̂2
ijkk′ll′)).

To calculate the LCU statistic ZLCU , it is necessary to estimate Cov(Zz, Zz′) for each

(CPz, CPz′) ∈ CP. If z = z′, then the covariance is one. For z 6= z ′, it equals

Cov(Zz, Zz′) = d−1/2Cov


 ∑

(i,j)∈CPz

V̂ ar(Vij)
−1Vij,

∑

(i′,j′)∈CPz′

V̂ ar(Vi′j′)−1Vi′j′




= d−1/2
∑

(i,j)∈CPz

∑

(i′,j′)∈CPz′

V̂ ar(Vij)
−1V̂ ar(Vi′j′)−1Cov(Vij, Vi′j′), (15)

where

d =


 ∑

(i,j)∈CPz

V̂ ar(Vij)
−1


1 +

∑

(i′,j′)∈CPz

V̂ ar(Vi′j′)−1Cov(Vij, Vi′j′)






∗


 ∑

(i,j)∈CPz′

V̂ ar(Vij)
−1


1 +

∑

(i′,j′)∈CPz′

V̂ ar(Vi′j′)−1Cov(Vij, Vi′j′)




 (16)

and

Cov(Vij, Vi′j′) =
∑

(SPik,SPjl)∈(SPi,SPj)

∑

(SPi′k,SPj′l)∈(SPi′ ,SPj′)

ŵijklŵi′j′k′l′Cov(Uijkl, Ui′j′k′l′).(17)

The covariance Cov(Vij, Vi′j′) can be estimated by 0 if the sets {i, j} and {i′, j ′} do not

intersect, and by σ̂2
iji′j′kk′ll′ = (Q/S)σ̂2

1iji′j′kk′ll′ + (Q/T )σ̂2
2iji′j′kk′ll′ otherwise, with

σ̂2
1iji′j′kk′ll′ = {ST (T − 1)}−1

∗
∑

1

δiskδi′sk′εjtlεj′t′l′{φ(Xisk, Yjtl) − θijkl0}{φ(Xi′sk′, Yj′t′l′) − θi′j′k′l′0} (18)
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and

σ̂2
2iji′j′kk′ll′ = {TS(S − 1)}−1

∗
∑

2

δiskδi′s′k′εjtlεj′tl′{φ(Xisk, Yjtl) − θijkl0}{φ(Xi′s′k′, Yj′tl′) − θi′j′k′l′0} (19)

where
∑

1 denotes summation over s = 1, · · · , S and t 6= t′ = 1, · · · , T ; and
∑

2 denotes

summation over t = 1, · · · , T and s 6= s′ = 1, · · · , S.

For a test based on Wilcoxon statistics, φ(x, y) = I(y > x) and θijkl0 = 1/2, and for a

test based on t-statistics, φ(x, y) = y − x and θijkl0 = 0.
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Figure Legends

Figure 1. (A) The left panel shows D1
115, D1

123, D1
146, D1

179, and D1
1810, a maximal i.i.d.

sample of pairwise sequence distances calculated from the 10 sequences of Patient 1 in the

Slow/Non-Progressor Group 1. The right panel shows D2
726, D2

738, D2
745, and D2

779, a maximal

i.i.d. sample of pairwise sequence distances calculated from the 9 sequences of Patient 7 in

the Progressor Group 2. (B) For the 9 persons in the Slow/Non-Progressor Group 1 and the

12 persons in the Progressor Group 2, the figure illustrates a correspondence pairing that

links each individual in Group 1 with a unique individual in Group 2.

Figure 2. The figure shows the estimated power in the simulation study of the test statistics

Tpoolmn (black solid lines), Tpoolmed (red dashed lines), and Tcons (green dotted lines), versus

the correlation 0, 0.25, or 0.50 among the intra-individual pairwise distances that share one

sequence. The left, middle, and right rows are for K = 4, 8, and 12 sequences per subject,

and the left, middle, and right columns are for M = 5, 10, and 15 subjects per group.

Figure 3. Boxplots of the intra-individual pairwise (A) synonymous, (B) nonsynonomous,

and (C) DNA difference measurements Dg
kij, for the 9 persons in the Slow/Non-Progressor

Group 1 (n =
∑9

k=1 n1
k(n

1
k − 1)/2 = 387 total pairwise distances) and the 12 persons in

the Progressor Group 2 (n =
∑12

k=1 n2
k(n

2
k − 1)/2 = 523 total pairwise distances). Dg

kij

is the synonymous genetic distance between sequences i and j from person k in Group

g computed on predicted CTL epitope regions minus this distance computed on predicted

non-CTL epitope regions. (D) is a boxplot of the intra-individual to-consensus differences

in DNA distances computed on predicted CTL epitope regions versus on non-CTL epitope

regions.
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Figure 4. For the first 20 of the 100 correspondence pairings (CPz) of individuals in the

Slow/Non-Progressor and Progressor groups used for applying the LCU test to the example

data, the panel shows the histogram of the Z-statistics Zij calculated in Step 2. The stratified

Z-statistic Zstratz calculated for each correspondence pairing is indicated by a bold vertical

line.
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