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SUMMARY. In survival analysis, often times the pattern of instantaneous risk over time is more interesting 
than that of the cumulative risk. For this case, a nonparametric hazard function estimate is more appropriate 
for summarizing the risk experience of a group of patients than the corresponding Kaplan-Meier estimate. 
In comparing a new treatment with a standard therapy, it is important to know if the treatment loses it 
potency during the follow-up period, and if it does, one would like to know when it becomes ineffective. 
Unfortunately, with a plot of the differences of two Kaplan-Meier curves, it is rather difficult to capture 
such temporal trends. In this article, we propose simple procedures for constructing confidence bands for the 
contrast of two hazard functions with censored data. The simultaneous interval estimates are quite useful for 
identifying possible values of the contrast over time with a certain degree of confidence. The new proposals 
are illustrated with an example and a small simulation study. 
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1. Introduction 
To compare two groups of subjects with a time-to-event end- 
point, the Kaplan-Meier curves (Kaplan and Meier, 1958) 
are routinely used to summarize the group difference graph- 
ically. For example, in a placebo-controlled, three-arm vac- 
cine trial conducted in rural Bangladesh among children and 
adult women, two similar oral vaccines were evaluated for pre- 
venting cholera disease (Clemens et al., 1990). For this trial, 
62,178 children and women were randomly assigned to three 
groups, of whom 41,342 were vaccinated and 20,836 received 
placebo. The response variable for the study was the time 
between 14 days after the third immunization and the first 
diarrheal episode in which Vibrio cholerae 01 was isolated. 
During the 3-year follow-up period, 258 vaccine recipients 
and 266 placebo recipients experienced the outcome. Figure 
l a  presents the Kaplan-Meier curves for the pooled vaccine 
group and the placebo group, and Figure l b  gives the differ- 
ences of these two curves. To show the degree of uncertainty 
of the estimated differences over the entire time span of inter- 
est, one may use the simulation technique proposed by Parzen, 
Wei, and Ying (1997) to construct, e.g., 95% confidence bands 
for the difference of the two survival functions (see the dashed 
lines in Figure lb).  It is rather difficult, however, to visualize 

the temporal effect of the vaccine with such plots based on 
cumulative incidence rates (Efron, 1988). For inst,ance, from 
Figure lb ,  it appears that the vaccine was effective in prevent- 
ing the aforementioned diarrheal episode, but it is not clear 
whether the vaccine lost its potency during the follow-up pe- 
riod. Moreover, if it did, it is important to know when and 
how fast the vaccine became ineffective. 

Figure 2 gives the corresponding hazard functions in terms 
of their nonparametric kernel estimates (see Section 2 for de- 
tails). Note that the hazard estimates change markedly over 
time, with a similar pattern for the two groups, indicating 
seasonal and annual variations in cholera incidence. This ob- 
servation is consistent with the known epidemiology of cholera 
in Bangladesh (Clemens et al., 1990) but is difficult to detect 
from the Kaplan-Meier plots in Figure 1. To see the differ- 
ences of two hazard functions graphically, one may plot the 
logarithm of the ratio of the two hazard function estimates 
over time (see Figure 3). We now see that the vaccine efficacy 
gradually diminished, especially after 2 years from immuniza- 
tion. This type of plot contains more information about the 
temporal effects of the vaccines than the plots in Figure 1. 
To draw inferences about a contrast of the two underlying 
hazard functions over a preselected time interval, pictorially 
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Figure 1. a. Kaplan-Meier estimates of survival curves for 
the placebo and vaccine groups in the cholera vaccine trial. 
b. Point estimates (solid curves) and 95% pointwise (dotted 
curves) and simultaneous (dashed curves) confidence intervals 
for the differences of the two survival curves. 

simultaneous confidence interval estimates are quite informa- 
tive because t,hey provide possible values of this contrast over 
the entire time span of interest with a certain degree of confi- 
dence. It is important to note that, if one views the contrast 
of two hazard rates its a function of time, confidence bands 
are more appropriate than their pointwise counterparts for 
quantifying the degree of uncertainty of the point estimates. 
To the best of our knowledge, there are no methods available 
for constructing such confidence bands in the literature. 

In this article, we propose simulation-based and analytical 
procedures for obtaining simultaneous confidence intervals for 
a contrast of two hazard functions. Sections 2 and 3 develop 
the procedures in two steps, the first for obtaining confidence 
bands for a single hazard function and the second for a con- 
trast of two hazard functions. The methods are illustrated 
with the above vaccine trial example and a small simulation 
experiment in Section 4. 

Our approach for constructing confidence bands via kernel 
smoothing has been taken by many others for constructing 
confidence bands for densities and in nonparametric regres- 
sion. This literature includes Hall and Titterington (1988), 
Hall and Owen (1993), Hardle and Bowman (1988), Eubank 

Figure 2. Kernel estimates (solid curves) and 95% point- 
wise (dotted curves) and simultaneous (dashed curves) con- 
fidence intervals for the hazard functions of the placebo and 
vaccine groups in the cholera vaccine trial. 

and Speckman (1993), and Xia (1998). To our knowledge, the 
literature is restricted to the one-sample problem; thus, the 
present work is novel within a broad area for its focus on the 
two-sample problem. 

2. Confidence Bands for a Hazard Function 
2.1 Nonparametric Hazard Function Estimator 
Let Xij  be the minimum of the failure time and censoring 
time for the j t h  subject in the ith group, j = 1,. . . .  ni; 
i = 1 , 2 .  Let Aij be the censoring indicator, equal t o  one 
if the failure time is observed and zero otherwise. The data 
consist of two independent samples [ ( X i j ,  Aij), j = 1,. . . .  r t i ] ,  

i = 1,2 .  Within each group, we assume that the failure time 
and censoring time are independent. Let &(t )  be the hazard 
function for subjects in the i th group and let [ t l , t 2 ]  be a 
fixed time interval such that pr(Xi1 < t l ,Ai ,  = 1) > 0, and 
pr(Xi1 > t2,Ail = 1) > 0 , i  = 1,2. We consider inference 
on each A i ( t ) , i  = 1,2 ,  in a preselected time interval [ U ~ , P L Z ]  

contained in [tl , t z ] .  
For t E [ u ~ , ' I L ~ ] ,  &(t)  can be consistently estimated by a 

kernel estimator, 
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Figure  3. Point estimate (solid curves), 95% pointwise 
(dotted curves), 80% simultaneous (hatched curves), and 95% 
simultaneous (dashed curves) confidence intervals for the log 
hazard ratio (vaccine/placebo) in the cholera vaccine trial. 

where A,@) = J~(l/yZ(s))dN,(s) is Nelson (1972) and Aalen’s 
(1978) estimator of the cumulative hazard function &(t)  = 

[ iA,(s)ds, with N,(t)  = C?L1 Nz,(t) = C?L1 f ( X Z ,  5 
t ,  A,, = l),  K(t) = C:L1 Y,,(t) = C:Ll I(X,,  L t ) ,  and I(.) 
the indicator function. The kernel function K is a bounded 
function with support [-1,1], integral one, mean zero, and 
positive second moment. The bandwidth b, is a positive 
quantity that indicates the window [t-b,, t f b , ]  over which the 
Nelson-Aalen estimator is smoothed. The kernel estimator 
has been studied by Rice and Rosenblatt (1976), Yandell 
(1983), Ramlau-Hansen (1983), and Tanner and Wong (1983), 
among others. Because the kernel estimate &(t) of (1) is 
valid only for t E [tl + b,,t2 - b,], we use the method of 
Gasser and Miiller (1979) to extend the estimate to the tail 
regions. Specifically, for t in the lower tail region [U I ,  tl + b,), 
we estimate X , ( t )  by (1) with kernel function K(. )  replaced 
by Kt( z )  = K(z)(yt + $w), where z E [-1,(t - t i ) /b , ]  
and the scalars -yt and $t are determined by the conditions 
Jcltl)fb’ Kt(z)dz = 1 and J(t l t l ) lb’  zKt(z)dz = 0. For t in 
the upper tail region ( t 2  - b,, 7 4 1 ,  the symmetric counterpart 
is used. 

2.2 Confidence Bands 
To approximate the distribution of i i ( t ) ,  the choice of 
bandwidth plays an  important role. For example, if we choose 
bi such that nibi + cc and 7~zf’~bi + 0 as ni + co, then for 
a fixed t ,  

&(t)  - X , ( t )  M UZ(t) 

f nr ’r 

(2) 

J i ( t )  = ~ ( y ~ ( t )  > o), Mij ( t )  = ~ i j ( t )  - 1; ~i(s)~,j(s)ds, and 
nzf/2bi/2Ui(t) is asymptotically normal (see Andersen et al., 
1993, Theorem IV.2.4). 

As suggested in the literature for nonparametric function 
estimation, the bandwidth can alternatively be chosen in 
a less ad hoc way to satisfy an optimality criterion, e.g., 
to minimize an asymptotic approximation to the mean 
integrated squared error MISE(&(.)) = E S [ & ( t )  - Xi(t)12dt 
(see Andersen et al., 1993, p. 240, formulas (4.2.25) and 
(4.2.26)). The optimizing bandwidth b, satisfies n:l5bi + 

ki E (O,co), and with this choice, i i ( t )  - &(t)  - bias(Xi(t)) 
x Ui( t ) ,  where Ui( t )  is given in (2) and n?l5Ui( t )  is 
asymptotically normal (see Andersen et al., 1993, Theorem 
IV.2.5). It is important to note that this approximation 
requires a bias correction term bias(Xi(t)), which can be taken 
to be an estimate of (b!/2)Xy(t) z2K(z)dz .  Here X y ( t )  
is the second derivative of A i ( t ) ,  which can be estimated 
by the kernel estimator proposed by Andersen et al. (1993, 
p. 249) using a bandwidth bil that converges to zero more 
slowly than nL1’6. For nonparametric regression, Eubank and 
Speckman (1993) recommended choosing bil = b7j5,  while 
Hardle and Bowman recommended bil = 2bi. Here we select 
bil to minimize a bootstrap estimate of MISE(iy(.)) and 
then select bi to minimize the approximation of MISE(&(,)) 
computed using formula (4.2.26) in Andersen et al. (1993). 
The theoretical justification for the properties of the above 
function estimates with data-dependent bandwidths is given 
in Gilbert and Kosorok (2001). 

A bandwidth bi satisfying n i f 3 b i  + 0 is smaller 
than optimal, i.e., it undersmooths, with the advantage 
that the inherent bias in &(t) is negligible in the limit. 
Hall and Owen (1993) and Eubank and Speckman (1993) 
discussed undersmoothed kernel estimation for densities and 
in nonparametric regression, respectively. 

To approximate the distribution of U i ( t ) ,  note that the 
mean of Mij ( t )  is zero and its variance is the expected value 
of Nij ( t ) .  Using the random Gaussian multipliers technique 
proposed by Lin, Fleming, and Wei (1994) and Parzen et 
al. (1997) for approximating the distribution of a sum of 
stochastic integrals with respect to Mij ( t ) ,  we replace Mij ( t )  
in Ui( t )  with Nij(t)Zij and then replace Xi,, Aij, and Y,( t )  
with their observed values zij, 6ij, and yi ( t ) ,  where {Zi j ,  j = 
1, . . .  , ni) is a random sample from the standard normal dis- 

h” 
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tribution. This results in a process 

x { Y i ( % j ) } - l W z i 3 )  > O)&jZZj. (3) 

Note that the only stochastic components in oi(t) are the 
{Z i j } .  Now, conditional on the data, the mean of oi(t) is zero 
and its covariance function evaluated at two time points t and 
5 is 

r 

The unconditional expected value of this covariance is 
precisely the covariance of Ui( t )  and Ui(5). This implies 
that, for any given t ,  r ~ ? / ~ U i ( t )  and n;/50i(t) have the same 
limiting distribution. Unfortunately, because bi converges to 
zero, the limiting value of the covariance function is zero 
whenever t # t”. By Lemma 1.5.9 of Van der Vaart and Wellner 
(1996), this implies that neither Ui(.)  nor Oi(.) have tight 
limit laws, and thus we cannot use weak convergence plus 
the continuous mapping theorem applied to the supremum 
functional in constructing confidence bands as done in Lin 
et al. (1994) and Parzen et al. (1997). On the other hand, it 
follows from Yandell (1983) and Bickel and Rosenblatt (1973) 
that the distribution of the supremum of Ui( . )  (suitably 
standardized and centered) can be approximated by that of 
the supremum of Ui(.). This follows because standardized 
and centered versions of the suprema of Ui(.) and of Oi(.) 
conditional on the data have the same limiting distribution 
(an extreme value distribution) for a bandwidth bi satisfying 

-+ Ici E ( 0 , ~ ) .  Specifically, for every z E (--oo,oo), 
with uzn, a consistent estimator for uz as described in Gilbert 

e -2e -x  , where r i  = [210g[(uzni - u ~ ) / b i ] ] ~ / ~  and C i ( t )  is 
the estimated standard deviation of Ui( t ) ,  and likewise for 
oi(t) standardized and centered in the same way. A proof of 
this result is given in Gilbert and Kosorok (2001). The proof 
requires twice continuous differentiability of &(t) on [tl ,  t2], 
which we assume henceforth for i = 1,2. 

In practice, one can easily approximate the distribution 
of Oi((t) by generating a large number, say L ,  of random 
samples { Zij }. For each realized sample { zij }, we calculate a 
realization of Oi(t) .  Then the distribution of the supremum 
of U i ( . ) ,  and therefore of Ui( . ) ,  can be approximated by 
the empirical one based on the L sets of realizations of 
Oi(.). For example, to obtain 1 - a-level confidence bands 
for A,(.) on an interval [211,uz] E: [tl,t2] based on the 
statistic  up^^<^<^^ lUt(t)/&(t)l ,  one may use the above 
simulation technique to obtain the cut-off point ci(a)  that 
satisfies pr(sup,llt5uz lOi(t)/Gi(t)l < &(a))  M 1 - a. Here, 
G i ( t )  is the observed value of si(t), which can be obtained 
empirically using the L realizations of oi(t) or using the 
variance estimator 

,--.A 

iji(t>2 = var(Ai(t)) 

= b i z  J~(s) { K ( ( t  - s ) / b i ) / y Z ( s ) } 2 d N i ( ~ ) ,  (4) 

which is derived from the standard martingale theory for 
stochastic integrals (cf., Andersen et al., 1993, p. 232). 
The corresponding confidence bands for X i  (.) on [ul , uz] are 
[ i i ( t )  - bias(Ai(t)) f ci(a)fi i( t)  : u1 5 t 5 4. The cut- 
off point ci(a)  can also be obtained through an analytic 
approximation to the distribution of supul <t<uZ I ( A i ( t )  - 
A i ( t )  - bias(Ai(t)))/iji(t)l proposed in Theorems 4.1 and 4.2 
of Yandell (1983). Because the analytic approximation is 
less accurate than the simulation-based approximation, the 
proposed simulation-based bands are expected to be more 
reliable (see Gilbert and Kosorok, 2001, for details). The 
improved approximation is akin to Hall’s (1991) result 
that the bootstrap provides a better approximation to 
the distribution of the supremum of a standardized kernel 
density estimator than the associated limiting extreme value 
distribution. Splus/R functions implementing the methods 
are available from the first author. 

3. Confidence Bands for a Contrast of Two Hazard 

Let q(.) = g(Xl(.), Xz(.)) quantify the “difference” between 
the two hazard functions. For example, q(.) = log[Xz(.) +- 
XI(.)] or = Xz(.)-A1(.). Fort E [u1,uz], aconsistent estimator 
G ( t )  for ~ ( t )  is g ( j ~ ( t )  - bias(Al(t)), &(t)  - bias(Xz(t))). To 
obtain confidence bands for v(.), consider the process V ( t )  = 
(7j(t) - q(t))/G(t),uI 5 t 5 u2, where n = n1 + nz and a(.) 
is a weight function that converges in probability, uniformly 
on [ulru2], to a deterministic function u(.) .  A natural choice 
of G ( t )  is the estimated standard deviation of +(t). If g(.) has 
continuous first partial derivatives, then [V(t)  : u1 5 t 5 u2] 
is approximately equal to the process 

1: 
h^ 

_ _  
- A  

Functions 

h^ - ^  

n 
,5 

C(t)-l C g i ( x , ( t ) , x 2 ( t ) )  @(t )  - &(t) - S s & ( t ) ) )  , 
i=l 

u1 I t l W ,  

where gi is the partial derivative of g with respect to the ith 
argument, i = 1,2. It follows from ( 2 )  that the above process 
is approximately equal to 

V ( t )  = G(t)-’ 
2 

gi ( i l ( t )  - g s ( i l ( t ) ) , i z ( t )  - b%(iz(t))) 
i=l 

x U i ( t ) .  

When 6 ( t )  is consistent for the standard deviation of f j(t), 
then standardized versions of the suprema of IV(t)I and 
IV(t)l  have extreme value limiting distributions in the special 
case in which bl = bz (Gilbert and Kosorok, 2001). In this 
case, an 1 - a-level confidence band for v ( . )  on an interval 
[ul, u 2 ]  C [tl , tz] can be constructed as 

{ G ( t )  f k(CX)G(t) : U1 5 t 5 U Z } ,  (5) 

with k ( a )  = (d + z / r )  and z = log[-2/log(l - a ) ] ,  where 
T = (210g[(uz - ~ 1 ) / b i ] ) ’ / ’ ,  d = T + F1 log[[J!1(K’(s))’ds/ 

( K ( ~ ) ) ~ d s ] ~ / ~ / ( 2 ~ ) ] ,  and G ( t )  is calculated using formula 
(4) and the delta method. 
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When C ( t )  is not the estimated standard deviation of fj(t) 
or when b l  # b2, though, it is difficult if not impossible to 
obtain the asymptotic distribution of the supremum of /p(.)l 
analytically. On the other hand, in general, the distribution 
of p ( t )  can be approximated by that of 

3(t) = G(t)-’  
2 

gi (X I@)  - G s ( i l ( t ) ) , X 2 ( t )  - b%(&(t))) 
i= 1 

x G(t) ,  
where G ( t )  is the observed value of G ( t ) .  In particular, as 
proved in Gilbert and Kosorok (2001), for optimal bandwidths 
bi satisfying n:l5bi -+ ki E (0, m), i  = 1,2, a suitably 
standardized version of the supremum of V(.) conditional 
on the data converges to the same distribution (similar to 
the extreme value distribution) &s the standardized version 
of the supremum of p(.). Thus, the distribution of G = 
S U ~ ~ ~ ~ ~ ~ ~ ~  lp(t)I can be approximated by that of G = 
supuILtlu2 IV(t) I .  An 1 - a-level confidence band for [ ~ ( t )  : 
u1 5 t I: “21 is then given by 

where d ( a )  is defined by pr(G > d ( a ) )  = a and can be 
approximated using, say, L realizations of G. If the weight 
function 6 ( t )  is the estimated standard deviation of fj(t), it 
may be Calculated empirically using the L realizations of each o,(.), i = 1,2, or using equation (4) and the delta method. 

In the special case that the analytical bands can be 
computed, the simulation-based bands are expected to behave 
more reliably because 6 converges to G more quickly than 
the closed-form limiting approximation (Gilbert and Kosorok, 
2001). Note that, if undersmoothed bandwidths are used, the 
above procedures yield confidence bands without requiring a 
bias correction, i.e., with bias(X,(t)) taken to be zero. 

4. Example and Simulation Experiment 
For the vaccine trial in Bangladesh, let Xi(.)(X2(.)) be the 
hazard function for trial participants in the placebo (pooled 
vaccine) group. Let the kernel function be Epanechnikov’s 
kernel, K ( z )  = 0.75(1 - z2)1(lzl 5 l ) ,  and let ti = u1 = 1 
month and u2 = 36,tz = 38 months. The interval [1,36] 
within [1,38] was chosen because some events occurred in 
each group before 1 month and after 38 months. The optimal 
bandwidths b,l and b, were calculated as described in Section 
2.2, giving b l l  = 11.62,bl = 5.56,b12 = 11.64,bz = 5.59. 
Gasser and Miiller’s (1979) procedure was used to estimate 
X,(t) in the tail regions [l, 1 + b,) and (38 - b,, 361. 

Figure 2a and 2b shows 95% bias-corrected confidence 
bands for Xi(.) and X2(-) over the time interval 1-36 
months based on 1000 realizations of f i 1 ( . )  and 02(.), re- 
spectively, using empirical standard error estimates GZ (t) .  
The critical values are approximated as ci(0.05) = 3.40 
and ~ ~ ( 0 . 0 5 )  = 3.49. For comparison, we also constructed 
the confidence bands for A,(.) using Yandell’s (1983) second- 
order approximation to the asymptotic distribution of the 
supremum of the standardized it(.) and the variance 
estimates in (4) (see Figure 2c and 2d). Yandell’s bands are 
very similar to ours, with critical values 3.48 and 3.52 for the 
placebo and vaccine groups, respectively. 

h^ 

Next, set ~ ( t )  = log{X2(t)/Xl(t)}, Figure 3a depicts 80 and 
95% confidence bands for q(.) based on 1000 realizations of 
G. Here the weight function 6(.) was the empirical standard 
deviation of f j ( . )  estimated using 1000 realizations of each oi(-). The critical values are 40.20) = 3.13 and d(0.05) = 
3.56. For vaccine trials in general, the vaccine efficacy at 
time t may be defined as 1 - X2(t)/X1(t), which has a useful 
interpretation (Halloran, Haber, and Longini, 1992). For the 
present case, the estimated vaccine efficacy (= 1 - ee( t ) )  is 
highest 6 weeks after the third immunization ( t  = 1 month) 
at 1 - e-1.7 = 0.82, drops linearly over the next 5 months 
to about 1 - e-o.6 = 0.45, vacillates between 0.45 and 
1 - = 0.63 over the next 18 months, and then wanes 
steadily to  zero during the third year of follow-up. Because 
the confidence bands are relatively wide during the first 4 
months, the inference of relatively high vaccine efficacy during 
this early period must be interpreted cautiously. Note that the 
upper confidence band rises above zero at 2 years of follow-up. 

Figure 3b shows the analysis based on the analytical 
confidence bands of (5) using common bandwidth b = 
(bl + b2)/2 = 5.575 and C ( t )  calculated using (4) and the 
delta method. The confidence bands are very similar to 
the simulation-based bands, with practically identical 0.20- 
and 0.05-level critical values 3.12 and 3.56, respectively. 
We also recalculated the simulation-based confidence bands 
without the bias correction and again with undersmoothed 
bandwidths bi satisfying n,1/3bi + lc ( 0 , ~ )  and obtained 
very similar results. Note that the 80% confidence bands are 
not much narrower than the 95% confidence bands. Eubank 
and Speckman (1993) observed the same property for their 
bands in nonparametric regression. 

Fkom Figure 3, we may conclude that the vaccines were 
moderately efficacious in preventing cholera disease during 
the first 2 years after the vaccination series and then steadily 
lost their effectiveness, with no efficacy beyond 3 years. This 
suggests that immunogens that elicit more durable immune 
responses need to be developed in reformulated cholera 
vaccines. 

A simulation experiment was conducted to evaluate the 
finite-sample accuracy of 0i(t) as an approximation for hi(t) 
= i i ( t )  - &(t) - bias(Xi(t)) and of G for supullt5u2 \v(t>l. 
For groups 1 and 2, we repeatedly generated exponential 
(XI = 0.064) and Weibull (A2 = 0.064, shape = 1.5) failure 
times, respectively, with n1 = n2 = 100 and 25% random 
censoring in each group. For each of 1000 simulated datasets, 
we calculated n:/5hi(18), V(18), sup4st532 In;’5hi(t)l, G, 

x Oi(t)l, C?, i = 1,2. The empirical distribution functions 
of these quantities show that the approximations are 
quite accurate (see Figure 4), although, as expected, 
approximations at a fixed time point (t = 18) are better than 
approximations of suprema. In additional simulations, we 
found that the accuracy of the approximations is insensitive 
to the use of bias adjustment and to the method of 
computing the standard deviation G ( t ) ,  but the accuracy of 

~ u p ~ < ~ i ~ ~  

5.  Remarks 
In a comparative study with respect to a subject’s “surviva1,1) 
quantitative summaries of a contrast of two hazard functions 

h,. 

and their approximations ni 2/5 Ui(l8), - c ( l8 ) ,  ~ u p 4 ~ ~ l ~ ~  Ini 2 / 5  

~i ( t )  1 diminishes for larger bandwidths. 
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215 ~ Figure 4. For the simulation study, (a) and (b) show the empirical cumulative distribution function (e.c.d.f.) of ni ( X i ( l 8 ) -  
Xi(18) - bias(Xi(l8))) and of the approximation n;l50i(l8) for i = 1,2, respectively, ( c )  shows the e.c.d.f. of V(18) and of the 

approximation c(18), ( d )  and ( e )  show the e.c.d.f. of ~ ~ p ~ < ~ < ~ 2  _ _  Ini ( X i ( t )  - A i ( t )  - bias(Ai(t)))l and of the approximation 

h^ 

h^ 2 / 5  ~ 

2/5 - 
Ini Ui(t)I for i = 1,2,  respectively, and ( f )  shows the e.c.d.f. of _ _  IV(t)I and of the approximation G. 

can be quite informative. In practice, we highly recommend 
plotting the point and interval estimates of such contrasts in 
addition to the routine Kaplaii-Meier estimates. Like other 
measures of the treatment difference over the course of a 
longitudinal study, the clinical interpretation of the result- 
ing graphical display based on the hazard functions should be 
interpreted cautiously. The individuals in the risk sets over 
time are not comparable in the two groups even in a randoni- 
ized trial setting. On the other hand, the hazard ratio at a 
given time t postvaccination can be a particularly useful mea- 
sure of efficacy in a placebo-controlled HIV vaccine trial since 
randomization and blinding imply that it can be interpreted 
as the vaccine's multiplicative reduction in the transmission 
probability given a single exposure at time t. This mecha- 
nism of efficacy is plausible because vaccination may decrease 
the probability that a given exposing HIV infects a host cell, 
leading to a proportionate reduction in the probability of es- 
tablished infection. 

This article develops simulation-based and analytical pro- 
cedures for constructing confidence bands about a smooth 
contrast of two hazard functions. In general, the simulation- 

based approach is expected to match or outperform the an- 
alytical approach. Bootstrap procedures offer alternatives to 
our simulation technique. For example, a smooth bootstrap 
could proceed by estimating the failure time and censoring 
densities via nonparametric kernel smoothing (using a large 
bandwidth to oversmooth), independently resampling from 
the two density estimates for each group to form bootstrap 
datasets, and for each dataset, calculating the supremum of 
V*( t )  = (f i*(t) - f i ( t ) ) / G * ( t ) .  The result of Hall (1991) for 
the nonparametric bootstrap in the uncensored case suggests 
that the smooth bootstrap would have comparable theoretical 
coverage properties as our simulation-based approach, though 
this remains to be investigated. The bootstrap would be more 
computationally intensive than the simulation technique used 
here. 

The bias of kernel hazard estimators and the selection of 
the bandwidths pose challenges to constructing the confidence 
bands. We have suggested two approaches, one that bias cor- 
rects by kernel estimation of the second derivative of the haz- 
ard functions and a simpler approach that undersmooths and 
does not bias correct. The first method is optimal theoreti- 
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cally but may suffer if the second derivative is poorly esti- 
mated (see the Discussion in Hardle and Bowman, 1988). For 
applications in which the bias of each hazard function is in 
the same direction, the bias of the contrast of hazard func- 
tions will tend to be diminished. Thus, the bias problem may 
oftcn be less severe for the twesample problem than for the 
one-sample problem. 

Note that the confidence bands procedures can be adapted 
for testing the null hypothesis Ho: X i ( t )  = X z ( t )  for all t E 
[ul ,  7 4  versus various alternative hypotheses. For example, 
for a general alternative hypothesis, the test statistic 
suplll Its2L2 Jfj(t)/fi(t)J can be used, with critical value deter- 
mined analytically or by simulations. For the example, the 
test statistic equals 6.98 and the simulation-based pvalue is 
< 0.001. 

The confidence bands constructed here can also be based 
on nonparametric hazard estimates that use time-varying ker- 
nels and time-varying or data-dependent bandwidths (Muller 
and Wang, 1994). Furthermore, the techniques presented in 
this article can be used for constructing simultaneous interval 
estimates for contrasts of two intensity functions of point pro- 
cesses. Applications include cause-specific hazard functions 
for competing risks data and transition intensities in Markov 
chain models under general types of censoring beyond the ran- 
dom censorship model. In addition, under a semiparametric 
regression model (e.g., the Cox proportional hazards model), 
confidence bands for the hazard function given a set of covari- 
ates can be obtained accordingly. 
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RBSUME 
Dans les analyses de survie, 1’6volution du risque instantan6 
dans le temps est souvent plus inthressante que celle du risque 
cumulB. Dans ce cas, un estimateur non paramktrique de la 
fonction de risque est plus approprik pour resumer 1’6volution 
du risque que l’estimateur de Kaplan Meier correspondant. 
Lorsqu’on compare un nouveau traitement B un traitement 
de rBfBrence, il est important de savoir si le traitement perd 
de son efficacitk durant le suivi, et si oui B partir de quel 
moment. Malheureusement avec un graphique montrant la 
diffhrence de courbes de Kaplan Meier, il est plut6t difficile 
de visualiser de telles Bvolutions temporelles. Dans cet arti- 
cle, nous proposons des mBthodes simples pour construire des 
intervalles de confiance autour de la diffBrence de deux fonc- 
tions de risque instantank en prBsence de donnkes censurkes. 
Les estimateurs simultanks des intervalles de confiance sont 
trks utiles pour identifier des valeurs possibles de la diffBrence 
au cours du temps avec un certain degr6 de confiance. Ces 
nouvelles mkthodes sont illustrkes B l’aide d’un exemple et 
d’une petite Btude de simulation. 
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