Sieve Analysis—If and how does VEs depend on characteristics of HIV?

Xuesong Yu
Department of Biostatistics
University of Washington
March 7, 2006

Questions of Interest

- Is there evidence for differential vaccine efficacy against the different HIV genotypes?
- How does the vaccine efficacy vary across the different genotypes?

Vaccine Trial Data

- HIV genetic variation measured by the neutralizing face core genetic distance of the infecting HIV sequence to the GNE8 HIV strain represented in the vaccine
- HIV genetic distances are missing for non-infected subjects

	# Randomized	# Infected	%Infected
Vaccine	3502	145	4.1%
Placebo	1805	127	7.0%
Total	5307	272	

$$\hat{VE} = 42.9\%$$

Models for Sieve Analysis

			Endpoint		
			Binary	Failure time	
	Contin.		Wald/Score test	Gilbert et al 2006	
HIV	Discrete	Nominal	Chi-square	Cause-specific Cox model	
			MLR		
type		Ordinal	Trend test		
			Cumulative logit		

Categorization of HIV types

Infecting HIV strains

	0	1	2	3	4	Cohort size
Placebo	15	39	33	20	12	1805
Vaccine	7	16	28	33	48	3502
Total	22	55	61	53	60	5307
V/Total	0.318	0.291	0.459	0.623	0.800	

Histogram of gen1

Strain-Specific Vaccine Efficacy

• Define "per strain-specific contact" vaccine efficiacy by $VE^{pc}(s) = 1 - RR^{pc}(s)$ where

$$RR^{pc}(s) = \frac{\Pr(\text{Inf}|\text{Expos. to strain } s, \text{Vaccine})}{\Pr(\text{Inf}|\text{Expos. to strain } s, \text{Placebo})}$$

$$e_s^{\beta} = OR(s) = \frac{RR^{pc}(s)}{RR^{pc}(0)}$$

Tests for Differential VE

Null hypothesis: all OR(s) = 1

- Nominal categorical: Chi-square test $X^2 = 37.2$, df = 4, p-value < 0.0001
- Ordinal categorical: Cochran-Armitage trend test test score $z^2 = 4536$, df=1, p-value < 0.0001
- Categorical scored models $\exp(\beta) = 1.895, 95\% \text{ CI} = (1.517, 2.367),$ p-value< 0.0001
- All tests show that there is strong evidence for differential vaccine efficacy against the different HIV genotypes.

Estimation of Vaccine Efficacy

• MLR model

$$logit(Pr(Y = s|x)) = \alpha_s + \beta_s x$$

- Scored MLR model
 log odd ratio is linear with respect to HIV
 genetic distance
- Cumulative logit

$$OR(>s) = \frac{RR^{pc}(>s)}{RR^{pc}(\le s)}$$

Estimation of Vaccine Efficacy

\widehat{OR} Point estimate (95%CI)		
Strain	MLR	Scored MLR
1	0.879 (0.302 2.561)	1.895 (1.517 2.367)
2	$1.818 \ (0.650 \ 5.087)$	$3.591 \ (2.301 \ 5.604)$
3	3.536 (1.231 10.156)	$6.805 \ (3.491 \ 13.265)$
4	8.571 (2.860 25.692)	$12.895 \ (5.295 \ 31.403)$

Estimation of Vaccine Efficacy

	\widehat{OR} Point estimate (95%CI)		
Strain	Cumultaive logit		
> 0	$0.688 \; (0.269 \; 1.759)$		
> 1	$3.487 \ (1.550 \ 7.845)$		
> 2	$10.957 \ (4.753 \ 25.258)$		
> 3	$31.968 \ (13.027 \ 78.452)$		

Plot of Relative Risk MLR RR(k)/RR(0) genetic distance

Plot of Relative Risk

Plot of Relative Risk

Conclusion

- Vaccine efficacy does depend on infecting HIV strain
- Vaccine efficacy decreased dramatically as the genetic distance of infecting HIV strain increases